Learn More
To date, almost all experimental evaluations of machine learning-based recognition algorithms in computer vision have taken the form of “closed set” recognition, whereby all testing classes are known at training time. A more realistic scenario for vision applications is “open set” recognition, where incomplete knowledge of the(More)
Cryptographic transactions form the basis of many common security systems found throughout computer networks. Supporting these transactions with biometrics is very desirable, as stronger non-repudiation is introduced, along with enhanced ease-of-use. In order to support such transactions, some sort of secure template construct is required that, when(More)
This paper reviews the biometric dilemma, the pending threat that may limit the long-term value of biometrics in security applications. Unlike passwords, if a biometric database is ever compromised or improperly shared, the underlying biometric data cannot be changed. The concept of revocable or cancelable biometric-based identity tokens (biotokens), if(More)
Recent work has shown that visual attributes are a powerful approach for applications such as recognition, image description and retrieval. However, fusing multiple attribute scores - as required during multi-attribute queries or similarity searches - presents a significant challenge. Scores from different attribute classifiers cannot be combined in a(More)
Real-world tasks in computer vision often touch upon open set recognition: multi-class recognition with incomplete knowledge of the world and many unknown inputs. Recent work on this problem has proposed a model incorporating an open space risk term to account for the space beyond the reasonable support of known classes. This paper extends the general idea(More)
Digital images are everywhere—from our cell phones to the pages of our online news sites. How we choose to use digital image processing raises a surprising host of legal and ethical questions that we must address. What are the ramifications of hiding data within an innocent image? Is this an intentional security practice when used legitimately,(More)
Recognition problems in computer vision often benefit from a fusion of different algorithms and/or sensors, with score level fusion being among the most widely used fusion approaches. Choosing an appropriate score normalization technique before fusion is a fundamentally difficult problem because of the disparate nature of the underlying distributions of(More)
must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Abstract For identity related problems, descriptive(More)