Walter E. Rodriguez

Learn More
Sustained pressure overload causes cardiac hypertrophy and the transition to heart failure. We show here that dietary supplementation with physiologically relevant levels of copper (Cu) reverses preestablished hypertrophic cardiomyopathy caused by pressure overload induced by ascending aortic constriction in a mouse model. The reversal occurs in the(More)
Our hypothesis is that impairment of peroxisome proliferator-activated receptor-gamma (PPARgamma) initiates renal dysfunction by increasing renal glomerular matrix metalloproteinase-2 (MMP-2) activity because of increased renal homocysteine (Hcy) and decreased nitric oxide (NO) levels. C57BL/6J mice were made diabetic (D) by being fed a high-fat-calorie(More)
Elevated oxidative stress has been characterized in numerous disorders including systemic hypertension, arterial stiffness, left ventricular hypertrophy (LVH) and heart failure. The peroxisome proliferator activated receptor gamma (PPARgamma) ameliorates oxidative stress and LVH. To test the hypothesis that PPARgamma decreased LVH and cardiac fibrosis in(More)
BACKGROUND Homocysteine (Hcy) is an independent cardiovascular risk factor; however, in diabetes, the role of tissue Hcy leading to cardiac dysfunction is unclear. AIMS To determine whether tissue Hcy caused endothelial-myocyte uncoupling and ventricular dysfunction in diabetes. METHODS Diabetes was created in C57BL/6J male mice by injecting 65 mg/kg(More)
The agonists of peroxisome proliferator-activated receptor-gamma (PPARgamma) ameliorate cardiovascular complications associated with diabetes mellitus. We tested the hypothesis that recovery from ailing to failing myocardium in diabetes by PPARgamma agonist is in part due to decreased matrix metalloproteinase-9 (MMP-9) activation and left ventricular (LV)(More)
  • 1