Learn More
We analyze the Euler discretization to a class of linear-quadratic optimal control problems. First we show convergence of order h for the optimal values, where h is the mesh size. Under the additional assumption that the optimal control has bang-bang structure we show that the discrete and the continuous controls coincide except on a set of measure O(√ h).(More)
Pseudo-monotonicity seems to be a good notion to deal with convergence in non-linear terms of partial differential equations. J.-L. Lions [16] used two different definitions of pseudo-monotonicity for elliptic and parabolic problems, and derived associated existence results. Nonlinear elliptic-parabolic equations are intermediate equations for which an(More)