Walter A. Deutsch

Learn More
BACKGROUND Caloric restriction without malnutrition extends life span in a range of organisms including insects and mammals and lowers free radical production by the mitochondria. However, the mechanism responsible for this adaptation are poorly understood. METHODS AND FINDINGS The current study was undertaken to examine muscle mitochondrial bioenergetics(More)
Exposure to airborne fine particles (PM2.5) is implicated in excess of 50 000 yearly deaths in the USA as well as a number of chronic respiratory illnesses. Despite intense interest in the toxicity of PM2.5, the mechanisms by which it causes illnesses are poorly understood. Since the principal source of airborne fine particles is combustion and combustion(More)
The Drosophila neurogenic protein Notch is largely composed of tandemly repeated copies of an epidermal growth factor-like sequence. Notch protein contains 36 EGF-like elements, but no two are identical. In the present study, eight mutations are correlated with single amino acid substitutions in EGF-homologous elements of this protein. Genetic analyses of(More)
NF-kappaB is a DNA-binding protein complex that transduces a variety of activating signals from the cytoplasm to specific sets of target genes. To understand the preferential recruitment of NF-kappaB to specific gene regulatory sites, we used NF-kappaB p65 in a tandem affinity purification and mass spectrometry proteomic screen. We identified ribosomal(More)
The p53 protein responds to cellular stress and regulates genes involved in cell cycle, apoptosis, and DNA repair. Under normal conditions, p53 levels are kept low through MDM2-mediated ubiquitination and proteosomal degradation. In search for novel proteins that participate in this regulatory loop, we performed an MDM2 peptide pull-down assay and mass(More)
The human ribosomal protein S3 (hS3) possesses associated activities that suggest alternative roles beyond its participation in protein translation. For example, it is capable of cleaving apurinic/apyrimidinic (AP) DNA via a beta-elimination reaction, an activity that is missing in partially purified extracts of xeroderma pigmentosum group-D fibroblasts. In(More)
The multifunctional mammalian apurinic/apyrimidinic (AP) endonuclease is responsible for the repair of AP sites in DNA. In addition, this enzyme has been shown to function as a redox factor facilitating the DNA binding capability of Jun-Jun homodimers and Fos-Jun heterodimers by altering their redox state and to be involved in calcium mediated(More)
The human ribosomal protein S3 (hS3) possesses multifunctional activities that are involved in both protein translation, as well as the ability of cleaving apurinic/apyrimidinic (AP) DNA via a beta-elimination reaction. We recently showed that hS3 also has a surprising binding affinity for an 7,8-dihydro-8-oxoguanine (8-oxoG) residue embedded in a 5' end(More)
Human ribosomal protein S3 (hS3) has a high apparent binding affinity for the oxidative lesion 7,8-dihydro-8-oxoguanine (8-oxoG). The hS3 ribosomal protein has also been found to inhibit the base excision repair (BER) enzyme hOGG1 from liberating 8-oxoG residing in a 5'-end-labeled oligonucleotide. To understand the in vivo involvement of hS3 in BER, we(More)
Reactive oxygen species (ROS) arise through normal cellular aerobic respiration, and, in combination with external sources such as ionizing radiation, cigarette tar and smoke, and particulate matter generated by combustion, can have a profound negative effect on cellular macromolecules such as DNA that may lead to a number of human pathological disorders(More)