Learn More
In Peptostreptococcus elsdenii, a three-component flavoprotein electron transfer system catalyzes the oxidation of lactate and the reduction of crotonyl-coenzyme A (CoA). Spectral evidence showed that D-lactate dehydrogenase, when reduced by D-lactate, was able to reduce butyryl-CoA dehydrogenase, but only in the presence of the electron-transferring(More)
Ingram, Jordan M. (Michigan State University, East Lansing), and W. A. Wood. Enzymatic basis for d-arabitol production by Saccharomyces rouxii. J. Bacteriol. 89:1186-1194. 1965.-The enzymatic steps in d-arabitol synthesis by Saccharomyces rouxii were studied. The fermentation of d-glucose-6-C(14) gave rise to d-arabitol labeled at C-5; d-ribose of(More)
D-Lactate dehydrogenase has been purified to near homogeneity from Peptostreptococcus elsdenii. As isolated, the enzyme contains flavine adenine dinucleotide and a tightly bound metal cofactor. Inactivation by ortho-phenanthroline occurs in two steps and is partially blocked by D-lactate. Reactivation by divalent metal ions occurs, with divalent zinc being(More)
Coenzyme A (CoA) transferase from Peptostreptococcus elsdenii has been purified and crystallized, and some of its properties have been established. The work was facilitated by a newly developed coupled and continuous spectrophotometric assay in which the disappearance of added acrylate could be followed at 245 nm. The rate-limiting conversion of acetyl- and(More)