Walker H. Land

Learn More
Significant interest exists in establishing radiologic imaging as a valid biomarker for assessing the response of cancer to a variety of treatments. To address this problem, we have chosen to study patients with metastatic colorectal carcinoma to learn whether statistical learning theory can improve the performance of radiologists using CT in predicting(More)
When investigating covariate interactions and group associations with standard regression analyses, the relationship between the response variable and exposure may be difficult to characterize. When the relationship is nonlinear, linear modeling techniques do not capture the nonlinear information content. Statistical learning (SL) techniques with kernels(More)
This research describes a non-interactive process that applies several forms of computational intelligence to classifying biopsy lung tissue samples. Three types of lung cancer evaluated (squamous cell carcinoma, adenocarcinoma, and bronchioalveolar carcinoma) together account for 65–70% of diagnoses. Accuracy achieved supports hypothesis that an accurate(More)
BACKGROUND Statistical learning (SL) techniques can address non-linear relationships and small datasets but do not provide an output that has an epidemiologic interpretation. METHODS A small set of clinical variables (CVs) for stage-1 non-small cell lung cancer patients was used to evaluate an approach for using SL methods as a preprocessing step for(More)
Analysis of gene expression microarray datasets presents the high risk of over-fitting (spurious patterns) because of their feature-rich but case-poor nature. This paper describes our ongoing efforts to develop a method to combat over-fitting and determine the strongest signal in the dataset. A GA-SVM hybrid along with Gaussian noise (manual noise gain) is(More)