Learn More
The function of histone modifications in initiating and regulating the chromosomal events of the meiotic prophase remains poorly understood. In Saccharomyces cerevisiae, we examined the genome-wide localization of histone H3 lysine 4 trimethylation (H3K4me3) along meiosis and its relationship to gene expression and position of the programmed double-strand(More)
The repair of DNA double-strand breaks (DSBs) requires the activity of the Mre11/Rad50/Xrs2(Nbs1) complex. In Saccharomyces cerevisiae, this complex is required for both the initiation of meiotic recombination by Spo11p-catalyzed programmed DSBs and for break end resection, which is necessary for repair by homologous recombination. We report that Mre11p(More)
The Set1 protein of Saccharomyces cerevisiae is a histone methyltransferase (HMTase) acting on lysine 4 of histone H3. Inactivation of the SET1 gene in a diploid leads to a sporulation defect. We have studied various processes that take place during meiotic differentiation in set1delta diploid cells. The absence of Set1 leads to a delay of meiotic S-phase(More)
Treatment of eukaryotic cells with 8-methoxypsoralen plus UVA irradiation (8-MOP/UVA) induces pyrimidine monoadducts and interstrand crosslinks and initiates a cascade of events leading to cytotoxic, mutagenic and carcinogenic responses. Transcriptional activation plays an important part in these responses. Our previous study in Saccharomyces cerevisiae(More)
The α7-nicotinic acetylcholine receptor (α7-nAChR) is widely known as a neurotransmitter receptor in nervous systems. α7-nAChR is also present in a variety of non-neuronal tissues, where it has been implicated in the regulation of essential cellular functions including proliferation, survival, differentiation and communication. We have recently found in(More)
Modifications of histones are reportedly associated with the regulation of immunoglobulin (Ig) gene diversification mechanisms, but the extent of their involvement in promoting sequence alterations at the Ig variable (V) regions still remains to be elucidated. We have previously demonstrated that Ig gene conversion in the B cell line DT40 is accompanied by(More)
The class I histone deacetylases HDAC1 and HDAC2 are highly conserved except for their C-terminal domain, but are presumed to have distinct functions in various tissues. We investigated the division of roles between HDAC1 and HDAC2 for the control of transcription and recombination at the immunoglobulin (Ig) gene in DT40. HDAC1(-/-) knock-out cells showed(More)
Here, we describe a protocol for using the ADLib (Autonomously Diversifying Library) system to rapidly generate specific monoclonal antibodies using DT40, a chicken B-cell line that undergoes constitutive gene conversion at both light- and heavy-chain immunoglobulin loci. We previously developed the ADLib system on the basis of our finding that gene(More)
The recent development of screening strategies based on the generation and display of large libraries of antibody fragments has allowed considerable advances for the in vitro isolation of monoclonal antibodies (mAbs). We previously developed a technology referred to as the 'ADLib (Autonomously Diversifying Library) system', which allows the rapid screening(More)