Wai Lim Ku

Learn More
Various methods of reconstructing transcriptional regulatory networks infer transcriptional regulatory interactions (TRIs) between strongly coexpressed gene pairs (as determined from microarray experiments measuring mRNA levels). Alternatively, however, the coexpression of two genes might imply that they are coregulated by one or more transcription factors(More)
Epigenetic modifications to histones may promote either activation or repression of the transcription of nearby genes. Recent experimental studies show that the promoters of many lineage-control genes in stem cells have "bivalent domains" in which the nucleosomes contain both active (H3K4me3) and repressive (H3K27me3) marks. It is generally agreed that(More)
In this thesis, which consists of three parts, we investigate problems related to systems biology and collective behavior in complex systems. The first part studies genetic networks that are inferred using gene expression data. Here we use established transcriptional regulatory interactions (TRIs) in combination with microarray expression data from both(More)
In this thesis we present methods for applying techniques from complex network theory to analyze and interpret inferred biological interactions. With the advent of high throughput technologies such as gene microarrays and genome-wide sequencing, it is now possible to measure the activity of every gene in a cancer cell population under different conditions.(More)
  • 1