Learn More
Perinatal ischemia and/or hypoxia in humans are major risk factors for neurologic injury that often manifest as sensorimotor and locomotor deficits throughout development and into maturity. In these studies, we utilized an established model of neonatal ischemic-hypoxia that creates unilateral striatal, cortical, and hippocampal damage (Rice III, J.E.,(More)
The immature nervous system is capable of considerable compensatory reorganization following injury. This has been studied extensively following many different types of injury in humans and laboratory animals. One common risk factor associated with perinatal brain injury that has been associated with such reorganization is an ischemic-hypoxic event. Using(More)
Recent evidence indicates that thrombolysis may be an effective therapy for the treatment of acute ischemic stroke. However, the reperfusion of ischemic brain comes with a price. In clinical trials, patients treated with thrombolytic therapy have shown a 6% rate of intracerebral hemorrhage, which was balanced against a 30% improvement in functional outcome(More)
In a study of the capacity of neural grafts to promote functional recovery in rats with fimbria-fornix lesions, 5 groups of rats were studied behaviourally and with acetylcholinesterase (AChE) histochemistry: (1) sham-operated controls; (2) bilateral fimbria-fornix lesions; (3) bilateral lesions plus bilateral solid embryonic septal grafts to the lesion(More)
Recent studies have demonstrated that intrahippocampal cholinergic septal grafts can ameliorate deficits in spatial memory function and hippocampal cholinergic neurochemical activity in animals with disruptions of the septohippocampal pathway. Further studies have revealed that hippocampal cholinergic activity, as measured by high affinity choline uptake,(More)
Recent studies have demonstrated that intrahippocampal cholinergic septal grafts can ameliorate deficits in spatial memory function and hippocampal cholinergic neurochemical activity in animals with disruptions of the septohippocampal system. However, no study has determined if the restoration of spatial memory function is correlated to the restoration of(More)
A major obstacle in neural transplantation is a severe loss of neurons in grafts soon after implantation. In the present study, we have investigated whether the systemic administration of synthetic fibronectin peptide V can increase the survival of neural grafts. Synthetic fibronectin peptide V is derived from the 33,000 mol. wt carboxyl-terminal(More)
In the absence of immunosuppressive treatment, suspensions of cells from the developing septal region of mouse embryos were transplanted successfully into the denervated hippocampal formations of adult rat hosts. The longitudinal recovery of acetylcholinesterase (AChE)-containing fibers in the host was the index of transplant success. In transplant(More)
Embryonic septal and hippocampal tissue from mice was transplanted between species into the brains of adult rat hosts as cell suspensions. Deficits in the ability to learn a conditioned, hippocampally mediated, forced alternation behavior, which were caused by a bilateral transection of the fornix-fimbria pathway, were ameliorated in the septal transplant(More)