Waheb Bishara

Learn More
We present a field-portable lensfree tomographic microscope, which can achieve sectional imaging of a large volume (∼20 mm(3)) on a chip with an axial resolution of <7 μm. In this compact tomographic imaging platform (weighing only ∼110 grams), 24 light-emitting diodes (LEDs) that are each butt-coupled to a fibre-optic waveguide are controlled through a(More)
Despite the rapid progress in optical imaging, most of the advanced microscopy modalities still require complex and costly set-ups that unfortunately limit their use beyond well equipped laboratories. In the meantime, microscopy in resource-limited settings has requirements significantly different from those encountered in advanced laboratories, and such(More)
We present a lens-free optical tomographic microscope, which enables imaging a large volume of approximately 15 mm(3) on a chip, with a spatial resolution of < 1 μm × < 1 μm × < 3 μm in x, y and z dimensions, respectively. In this lens-free tomography modality, the sample is placed directly on a digital sensor array with, e.g., ≤ 4 mm distance to its active(More)
We demonstrate lensfree holographic microscopy on a chip to achieve approximately 0.6 microm spatial resolution corresponding to a numerical aperture of approximately 0.5 over a large field-of-view of approximately 24 mm2. By using partially coherent illumination from a large aperture (approximately 50 microm), we acquire lower resolution lensfree in-line(More)
We report a portable lensless on-chip microscope that can achieve <1 µm resolution over a wide field-of-view of ∼ 24 mm(2) without the use of any mechanical scanning. This compact on-chip microscope weighs ∼ 95 g and is based on partially coherent digital in-line holography. Multiple fiber-optic waveguides are butt-coupled to light emitting diodes, which(More)
Microfluidic devices aim at miniaturizing, automating, and lowering the cost of chemical and biological sample manipulation and detection, hence creating new opportunities for lab-on-a-chip platforms. Recently, optofluidic devices have also emerged where optics is used to enhance the functionality and the performance of microfluidic components in general.(More)
We present a detailed investigation of the performance of lens-free holographic microscopy toward high-throughput on-chip blood analysis. Using a spatially incoherent source that is emanating from a large aperture, automated counting of red blood cells with minimal sample preparation steps at densities reaching up to approximately 0.4 x 10(6) cells/muL is(More)
Over the last decade microfluidics has created a versatile platform that has significantly advanced the ways in which micro-scale organisms and objects are controlled, processed and investigated, by improving the cost, compactness and throughput aspects of analysis. Microfluidics has also expanded into optics to create reconfigurable and flexible optical(More)
The recent revolution in digital technologies and information processing methods present important opportunities to transform the way optical imaging is performed, particularly toward improving the throughput of microscopes while at the same time reducing their relative cost and complexity. Lensfree computational microscopy is rapidly emerging toward this(More)
A multi-angle lensfree holographic imaging platform that can accurately characterize both the axial and lateral positions of cells located within multi-layered micro-channels is introduced. In this platform, lensfree digital holograms of the micro-objects on the chip are recorded at different illumination angles using partially coherent illumination. These(More)