Wafa I. Abdel-Fattah

Learn More
A three-dimensional (3-D) scaffold is one of the major components in many tissue engineering approaches. We developed novel 3-D chitosan/poly(lactic acid-glycolic acid) (PLAGA) composite porous scaffolds by sintering together composite chitosan/PLAGA microspheres for bone tissue engineering applications. Pore sizes, pore volume, and mechanical properties of(More)
In a project to develop hydroxyapatites for bone replacement, biological and synthetic types were prepared at 600 degrees C, ground to 300-600 microns and immersed in a pooled human serum for periods up to 1 month at 4 degrees C to assess material interaction. It was found that the levels of calcium in the serum were reduced at 6 h immersion, followed by an(More)
Scaffolds exhibiting biological recognition and specificity play an important role in tissue engineering and regenerative medicine. The bioactivity of scaffolds in turn influences, directs, or manipulates cellular responses. In this study, chitosan/poly(lactic acid-co-glycolic acid) (chitosan/PLAGA) sintered microsphere scaffolds were functionalized via(More)
The objective of the present study was to synthesize and characterize chitosans with different degrees of deacetylation (DDA%), prepare chitosan microspheres with controlled chemistry and geometry, and fabricate three-dimensional (3-D) chitosan matrices based on microspheres with appropriate pore size, porosity and mechanical properties suitable for bone(More)
Among the less invasive surgical procedures for tissue engineering application, injectable in situ gelling systems have gained great attention. In this contest, this article is aimed to realize thermosensitive chitosan-based hydrogels, crosslinked with β-glycerophosphate and reinforced via physical interactions with β-tricalcium phosphate. The kinetics of(More)
Natural polymer chitosan and synthetic polymer poly(lactide-co-glycolide) (PLAGA) have been investigated for a variety of tissue engineering applications. We have previously reported the fabrication and in vitro evaluation of a novel chitosan/PLAGA sintered microsphere scaffold for load-bearing bone tissue engineering applications. In this study, the in(More)
A newly developed bone equivalent hydroxyapatite was derived from veterinary bone (VHAP). Sections of 1 cm of six rabbit mandibles were equally replaced by this VHAP graft. Radiological studies by X-ray were performed pre-operatively, immediately, and 1, 2 and 3 months post-operatively. The graft host-bone interface was examined periodically by scanning(More)
Nano-sized calcium deficient hydroxyapatite (CDHA) powders with an average particle size less than 100 nm were prepared by a co-precipitation method at low temperature. The initial Ca/P molar ratio was chosen to be less than the stoichiometric ratio of beta-TCP (1.5). Additionally, lowering the temperature and pH values accelerated HPO(4)(2-) incorporation(More)
Two novel silk composites of phosphatic phases with nanosilver/chitosan having enhanced biocompatibility were achieved. Hydroxyapatite and octa calcium phosphates were synthesized in situ within silk fibroin/chitosan/nanosilver composites recently studied. Thermo-gravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) verified their thermal(More)
As an alternative technique for calcium phosphate coating on titanium alloys, we propose to functionalize the metal surface with anionic bath containing chlorides of palladium or silver as activators. This new deposition route has several advantages such as controlled conditions, applicability to complex shapes, no adverse effect of heating, and cost(More)