Wafa B'chir

Learn More
The mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth and metabolism. It controls many cell functions by integrating nutrient availability and growth factor signals. Amino acids, and in particular leucine, are among the main positive regulators of mTORC1 signaling. The current model for the regulation of mTORC1 by amino(More)
In mammals, the GCN2/ATF4 pathway has been described as the main pathway involved in the regulation of gene expression upon amino acid limitation. This regulation is notably conferred by the presence of a cis-element called Amino Acid Response Element (AARE) in the promoter of specific genes. In vivo, the notion of amino acid limitation is not limited to(More)
CHOP encodes a ubiquitous transcription factor that is one of the most important components in the network of stress-inducible transcription. In particular, this factor is known to mediate cell death in response to stress. The focus of this work is to study its pivotal role in the control of cell viability according to the duration of a stress like amino(More)
The reversible phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α) is a highly conserved signal implicated in the cellular adaptation to numerous stresses such as the one caused by amino acid limitation. In response to dietary amino acid deficiency, the brain-specific activation of the eIF2α kinase GCN2 leads to food intake(More)
Muscle fitness is an important determinant of health and disease. However, the molecular mechanisms involved in the coordinate regulation of the metabolic and structural determinants of muscle endurance are still poorly characterized. Herein, we demonstrate that estrogen-related receptor α (ERRα, NR3B1) is essential for skeletal muscle fitness. Notably, we(More)
The intestinal mucosa of Crohn disease (CD) patients is abnormally colonized by adherent-invasive E. coli (AIEC). Upon AIEC infection, autophagy is induced in host cells to restrain bacterial intracellular replication. The underlying mechanism, however, remains unknown. Here, we investigated the role of the EIF2AK4-EIF2A/eIF2α-ATF4 pathway in the autophagic(More)
  • 1