Wade G. Rellergert

Learn More
Compared with atoms, molecules have a rich internal structure that offers many opportunities for technological and scientific advancement. The study of this structure could yield critical insights into quantum chemistry, new methods for manipulating quantum information, and improved tests of discrete symmetry violation and fundamental constant variation.(More)
Ultracold 174Yb+ ions and 40Ca atoms are confined in a hybrid trap. The charge exchange chemical reaction rate constant between these two species is measured and found to be 4 orders of magnitude larger than recent measurements in other heteronuclear systems. The structure of the CaYb+ molecule is determined and used in a calculation that explains the fast(More)
The role of electronic excitation in inelastic collisions between ultracold Ca atoms and Ba(+) ions, confined in a hybrid trap, is studied for the first time. Unlike previous investigations, this system is energetically precluded from undergoing inelastic collisions in its ground state, allowing a relatively simple experimental determination and(More)
The formation of (40)Ca(2)(+) molecular ions is observed in a hybrid (40)Ca magneto-optical and ion trap system. The molecular ion formation process is determined to be photo-associative ionization of ultracold (40)Ca atoms. A lower bound for the two-body rate constant is found to be beta ≥ 2 ± 1 × 10(-15) cm(3) Hz. Ab initio molecular potential curves are(More)
We demonstrate the integration of a linear quadrupole trap with a simple time-of-flight mass spectrometer with medium-mass resolution (m/Δm ∼ 50) geared towards the demands of atomic, molecular, and chemical physics experiments. By utilizing a novel radial ion extraction scheme from the linear quadrupole trap into the mass analyzer, a device with large trap(More)
We describe a novel approach to directly measure the energy of the narrow, low-lying isomeric state in 229Th. Since nuclear transitions are far less sensitive to environmental conditions than atomic transitions, we argue that the 229Th optical nuclear transition may be driven inside a host crystal with a high transition Q. This technique might also allow(More)
Samples of ultracold 174Yb+ ions, confined in a linear radio-frequency Paul trap, are heated via micromotion interruption, while their temperature, density, and therefore structural phase are monitored and simulated. The observed time evolution of the ion temperature is compared to a theoretical model for ion-ion heating allowing a direct measurement of the(More)
A low-threshold solid-state UV laser using a whispering gallery mode (WGM) resonator constructed from UV transparent crystalline material is demonstrated. Using a Ce3+:LiCaAlF6 resonator, we observe broad bandwidth lasing (280-330 nm) with a low threshold intensity of 7.5×10(9) W/m(2) and an effective slope efficiency of ~25%. The lasing time delay dynamics(More)
We present data that show a cycling transition can be used to detect and image metastable He2 triplet molecules in superfluid helium. We demonstrate that limitations on the cycling efficiency due to the vibrational structure of the molecule can be mitigated by the use of repumping lasers. Images of the molecules obtained using the method are also shown.(More)
We describe an approach to detecting ionizing radiation that combines the special properties of superfluid helium with the sensitivity of quantum optics techniques. Ionization in liquid helium results in the copious production of metastable He2 molecules, which can be detected by laser-induced fluorescence. Each molecule can be probed many times using a(More)