Learn More
Whereas the central nervous system (CNS) usually cannot regenerate, peripheral nerves regenerate spontaneously after injury because of a permissive environment and activation of the intrinsic growth capacity of neurons. Functional regeneration requires axon regrowth and remyelination of the regenerated axons by Schwann cells. Multiple factors including(More)
Considerable evidence links urokinase plasminogen activator (uPA) bound to its surface receptor (uPAR) with enhanced invasiveness of cancer cells. By blocking uPAR expression in human epidermoid carcinoma cells (HEp3), we have now identified an additional and novel in vivo function for this receptor by showing that receptor-deficient cells enter a state of(More)
—This paper develops a practical design method for implementing Tomlinson–Harashima precoding (THP) in a downlink channel with multiple antennas at the transmitter and a single antenna at each receiver. A two-step design process is proposed for minimizing the total transmit power while satisfying every user's minimum data rate and maximum bit-error rate(More)
Remyelination is a critical step for functional nerve regeneration. Here we show that fibrin deposition in the peripheral nervous system after injury is a key regulator of remyelination. After sciatic nerve crush, fibrin is deposited and its clearance correlates with remyelination. Fibrin induces phosphorylation of ERK1/2 and production of p75 NGF(More)
Laminins and collagens are extracellular matrix proteins that play essential roles in peripheral nervous system development. Laminin signals regulate Schwann cell proliferation and survival as well as actin cytoskeleton dynamics, which are essential steps for radial sorting and myelination of peripheral axons by Schwann cells. Collagen and their receptors(More)
Spiral ganglion neurons (SGNs) play a key role in hearing by rapidly and faithfully transmitting signals from the cochlea to the brain. Identification of the transcriptional networks that ensure the proper specification and wiring of SGNs during development will lay the foundation for efforts to rewire a damaged cochlea. Here, we show that the transcription(More)
Acoustic communication requires gathering, transforming, and interpreting diverse sound cues. To achieve this, all the spatial and temporal features of complex sound stimuli must be captured in the firing patterns of the primary sensory neurons and then accurately transmitted along auditory pathways for additional processing. The mammalian auditory system(More)
To investigate the function of laminin in peripheral nerve development, we specifically disrupted the laminin gamma1 gene in Schwann cells. Disruption of laminin gamma1 gene expression resulted in depletion of all other laminin chains known to be expressed in Schwann cells. Schwann cells lacking laminin do not extend processes required for initiating axonal(More)
—This letter investigates the structure of the optimal spatial multiplex scheme in a multiuser multiantenna wireless fading environment. Based on a sum-capacity criterion, this letter shows that the optimal transmission strategy in an uplink or downlink channel with n antennas at the base-station involves more than n users at the same time. In particular,(More)