Learn More
Experimental studies of electrons produced in a laser wakefield accelerator indicate trapping initiated by ionization of target gas atoms. Targets composed of helium and controlled amounts of various gases were found to increase the beam charge by as much as an order of magnitude compared to pure helium at the same electron density and decrease the beam(More)
The generation of ultrarelativistic positron beams with short duration (τ(e+) ≃ 30  fs), small divergence (θ(e+) ≃ 3  mrad), and high density (n(e+) ≃ 10(14)-10(15)  cm(-3)) from a fully optical setup is reported. The detected positron beam propagates with a high-density electron beam and γ rays of similar spectral shape and peak energy, thus closely(More)
Electron-positron pair plasmas represent a unique state of matter, whereby there exists an intrinsic and complete symmetry between negatively charged (matter) and positively charged (antimatter) particles. These plasmas play a fundamental role in the dynamics of ultra-massive astrophysical objects and are believed to be associated with the emission of(More)
Using electron bunches generated by laser wakefield acceleration as a probe, the temporal evolution of magnetic fields generated by a 4 × 10(19) W/cm(2) ultrashort (30 fs) laser pulse focused on solid density targets is studied experimentally. Magnetic field strengths of order B(0) ~ 10(4) T are observed expanding at close to the speed of light from the(More)
The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent(More)
We report experimental evidence that multi-MeV protons accelerated in relativistic laser-plasma interactions are modulated by strong filamentary electromagnetic fields. Modulations are observed when a preplasma is developed on the rear side of a μm-scale solid-density hydrogen target. Under such conditions, electromagnetic fields are amplified by the(More)
We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such(More)
We investigate a new regime for betatron x-ray emission that utilizes kilojoule-class picosecond lasers to drive wakes in plasmas. When such laser pulses with intensities of ∼5×10^{18}  W/cm^{2} are focused into plasmas with electron densities of ∼1×10^{19}  cm^{-3}, they undergo self-modulation and channeling, which accelerates electrons up to 200 MeV(More)
Laser based stereolithography methods are shown to be useful for production of gas targets for high intensity laser-plasma interaction experiments. A cylindrically symmetric nozzle with an opening of approximately 100 μm and a periodic attachment of variable periodicity are outlined in detail with associated density profile characterization. Both components(More)
  • 1