Learn More
Genomic evolution has been profoundly influenced by DNA transposition, a process whereby defined DNA segments move freely about the genome. Transposition is mediated by transposases, and similar events are catalyzed by retroviral integrases such as human immunodeficiency virus-1 (HIV-1) integrase. Understanding how these proteins interact with DNA is(More)
Protein catalyzed DNA rearrangements typically require assembly of complex nucleoprotein structures. In transposition and integration reactions, these structures, termed synaptic complexes, are mandatory for catalysis. We characterize the Tn5 pre-cleavage synaptic complex, the simplest transposition complex described to date. We identified this complex by(More)
This communication reports an analysis of Tn5/IS50 target site selection by using an extensive collection of Tn5 and IS50 insertions in two relatively small regions of DNA (less than 1 kb each). For both regions data were collected resulting from in vitro and in vivo transposition events. Since the data sets are consistent and transposase was the only(More)
The mutants used to show that phosphoglucose isomerase, and glucose itself, are not essential components of Escherichia coli had not been characterized genetically, other than by mapping. We now describe two new pgi mutants, one amber and the other a Mu-phage insertion, presumably both complete inactivation mutations. The new mutations do not give a(More)
The small genomes of obligate intracellular bacteria are often presumed to be impervious to mobile DNA and the fluid genetic processes that drive diversification in free-living bacteria. Categorized by reductive evolution and streamlining, the genomes of some obligate intracellular bacteria manifest striking degrees of stability and gene synteny. However,(More)
The inverted repeats of Tn5, which have identical restriction endonuclease cleavage patterns, have different functional properties. They differ with respect to RNA polymerase binding, full promotion of neomycin resistance, the polypeptides coded for by the repeats and their function in the transposition process. There is a week RNA polymerase binding site(More)
The initial chemical steps in Tn5 transposition result in blunt end cleavage of the transposon from the donor DNA. We demonstrate that this cleavage occurs via a hairpin intermediate. The first step is a 3' hydrolytic nick by transposase. The free 3'OH then attacks the phosphodiester bond on the opposite strand, forming a hairpin at the transposon end. In(More)
The nucleotide sequence of the lac promoter-operator region has been determined. The 122 base pairs comprising this region include the recognition sites for RNA polymerase, the positive regulatory protein, CAP, and the negative regulatory protein, the repressor. Identification of mutant variants of the sequence combined with the in vitro biochemical studies(More)
Transposons are a class of genetic elements that can move from one site in a cell's genome to another independently of the cell's general recombination system. Little is known about the mechanism of transposition of compound transposons such as Tn5, but it is thought that a transposon-encoded protein (a transposase) must recognize the outer ends of the(More)
Transposon Tn5 employs a unique means of self-regulation by expressing a truncated version of the transposase enzyme that acts as an inhibitor. The inhibitor protein differs from the full-length transposase only by the absence of the first 55 N-terminal amino acid residues. It contains the catalytic active site of transposase and a C-terminal domain(More)