Learn More
Factors that determine the competence of cells to respond to extracellular cues are not well understood. We demonstrate that two HOM-C transcription factors have antagonistic roles in determining the ability of Caenorhabditis elegans vulval precursor cells (VPCs) to respond to the inductive signal from the anchor cell of the somatic gonad. The vulva(More)
Microtubule organization in the cytoplasm is in part a function of the number and length of the assembled polymers. The intracellular concentration of tubulin could specify those parameters. Saccharomyces cerevisiae strains constructed with moderately decreased or increased copy numbers of tubulin genes provide an opportunity to study the cellular response(More)
The let-23 gene encodes a Caenorhabditis elegans homolog of the epidermal growth factor receptor (EGFR) necessary for vulval development. We have characterized a mutation of let-23 that activates the receptor and downstream signal transduction, leading to excess vulval differentiation. This mutation alters a conserved cysteine residue in the extracellular(More)
We are using Caenorhabditis elegans vulval induction to study intercellular signaling and its regulation. Genes required for vulval induction include the LIN-3 transforming alpha-like growth factor, the LET-23 epidermal growth factor (EGF)-receptor-like transmembrane tyrosine kinase, the SEM-5 adaptor protein, LET-60 Ras, and the LIN-45 Raf serine/threonine(More)
Sequences of genes for beta-tubulins from many different organisms demonstrate that they encode highly conserved proteins but that these proteins diverge considerably at their carboxyl termini. The patterns of interspecies conservation of this diversity suggest that it may have functional significance. We have taken advantage of the properties of(More)
The microtubules of mature nucleated erythrocytes are organized into a marginal band that is confined to a single plane at the periphery and that contains essentially the same number of microtubule profiles in each individual cell. Developing erythrocytes can be isolated in homogeneous and synchronously developing populations from chicken embryos. For these(More)
The relative uniformity of microtubule ultrastructure in almost all eukaryotic cells is thought to be a consequence of the conserved elements of tubulin sequence. In support of this idea, a mutation in a beta-tubulin gene of Drosophila melanogaster, occurring at a highly conserved position, produces U-shaped microtubules, suggesting a defect in either(More)
Reproducible cell-cell interactions contribute to the invariance of Caenorhabditis elegans development and allow high resolution study of molecular mechanisms of intercellular signaling. A number of new cell interactions have been discovered in the past year. The power of nematode molecular genetics has been increased through several technical advances and(More)
  • 1