W. Robb MacLellan

Learn More
The mammalian heart loses its regenerative potential soon after birth. Adult cardiac myocytes (ACMs) permanently exit the cell cycle, and E2F-dependent genes are stably silenced, although the underlying mechanism is unclear. Heterochromatin, which silences genes in many biological contexts, accumulates with cardiac differentiation. H3K9me3, a histone(More)
Heterochromatin protein 1 (HP1) is an essential heterochromatin-associated protein typically involved in the epigenetic regulation of gene silencing. However, recent reports have demonstrated that HP1 can also activate gene expression in certain contexts including differentiation. To explore the role of each of the three mammalian HP1 family members (α, β(More)
Despite over a decade of intense research, the identity and differentiation potential of human adult cardiac progenitor cells (aCPC) remains controversial. Cardiospheres have been proposed as a means to expand aCPCs in vitro, but the identity of the progenitor cell within these 3D structures is unknown. We show that clones derived from cardiospheres could(More)
BACKGROUND Cardiovascular progenitor cells (CPCs) have been identified within the developing mouse heart and differentiating pluripotent stem cells by intracellular transcription factors Nkx2.5 and Islet 1 (Isl1). Study of endogenous and induced pluripotent stem cell (iPSC)-derived CPCs has been limited due to the lack of specific cell surface markers to(More)
Cardiac myocytes (CMs) proliferate robustly during fetal life but withdraw permanently from the cell cycle soon after birth and undergo terminal differentiation. This cell cycle exit is associated with the upregulation of a host of adult cardiac-specific genes. The vast majority of adult CMs (ACMs) do not reenter cell cycle even if subjected to mitogenic(More)
BACKGROUND Protein-protein interaction networks are commonly sampled using yeast two hybrid approaches. However, whether topological information reaped from these experimentally-measured sub-networks can be extrapolated to complete protein-protein interaction networks is unclear. RESULTS By analyzing various experimental protein-protein interaction(More)
  • 1