W R Revelette

Learn More
The objective of this study was to determine the stability of the function describing subjects' magnitude estimates of added inspiratory resistive loads following short-term exposure (STE) to a high but nonfatiguing, inspiratory load. Four inspiratory resistive loads (8.9-35.7 cmH2O X l-1 X s) were presented twice each in random order. Subjects were asked(More)
Previous studies from these laboratories have shown that airway occlusion applied from the onset of inspiration or during midinspiration is associated with cerebral evoked potentials in human subjects. The hypothesis tested in the present study was that the more abrupt decrease in mouth pressure produced by midinspiratory occlusion will be associated with(More)
A long-held belief is that respiratory-related reflexes mediated by afferents in the diaphragm are weak or absent. However, recent data suggest that diaphragmatic afferents are capable of altering ventilatory motor drive as well as influencing perception of added inspiratory loads in humans. This review describes the sensory elements of the diaphragm, their(More)
The projections of phrenic nerve afferents to neurons in the dorsal (DRG) and ventral (VRG) respiratory group were studied in anesthetized, paralyzed, and vagotomized cats. Extracellular recordings of neuronal responses to vagal nerve and cervical phrenic nerve stimulation (CPNS) indicated that about one-fourth of the DRG respiratory-modulated neurons were(More)
Short latency phrenic motor responses to phrenic nerve stimulation were studied in anesthetized, paralyzed cats. Electrical stimulation (0.2 ms, 0.01-10 mA, 2 Hz) of the right C5 phrenic rootlet during inspiration consistently elicited a transient reduction in the phrenic motor discharge. This attenuation occurred bilaterally with an onset latency of 8-12(More)
Recent evidence from several laboratories suggests that activation of afferents in the diaphragm can reflexly affect inspiratory muscle activation. This study determined whether afferents in the diaphragm contribute to compensatory changes in phrenic motor drive when the operating length of the diaphragm is suddenly increased. Experiments were performed in(More)
The effect of background loading on magnitude estimation of added elastic and resistive inspiratory loads was determined. An analogous study involving estimation of the heaviness of weights in the hand was also performed. Perceptual performance was assessed using Stevens' power law psi = k phi n, where psi is the subjective magnitude, phi is the peak mouth(More)
Little is known regarding the role of diaphragm small-fiber afferents (groups III and IV) in the control of breathing. This study was designed to determine whether activation of these afferents with use of capsaicin affects phrenic efferent activity. Capsaicin injections into the phrenic artery were made in 10 alpha-chloralose-anesthetized dogs after each(More)
Recent evidence has suggested that phrenic nerve afferents can influence respiratory motor drive. This paper presents a technique whereby the activity of single phrenic nerve afferents can be recorded from uncut dorsal root filaments. Cervical dorsal roots 4, 5, and 6 were exposed by dorsal laminectomy in 10 anesthetized, spontaneously breathing cats. A(More)
  • 1