Learn More
Progelatinase A (proGLA) activation is thought to be initiated almost exclusively by the type I transmembrane members of the membrane type matrix metalloproteinase family (MT-MMP): MT1, -2, -3, and -5-MMP (MMP14, -15, -16, and -24). One difference between these enzymes and the other MMP family members is the insertion of eight amino acids between strands(More)
Proteolytic cleavage of the urokinase plasminogen activator receptor (uPA(R)) prevents the binding of uPA and vitronectin while generating biologically active uPAR fragments. We have recently shown that matrix metalloproteinase-12 (MMP-12) releases cellular uPAR-antigen from stimulated human micro-vascular endothelial cells providing a novel feedback(More)
The ADAM family of proteases are type I transmembrane proteins with both metalloproteinase and disintegrin containing extracellular domains. ADAMs are implicated in the proteolytic processing of membrane-bound precursors and involved in modulating cell-cell and cell-matrix interactions. ADAM8 (MS2, CD156) has been identified in myeloid and B cells. In this(More)
Membrane type 4 matrix metalloproteinase (MT4-MMP) shows the least sequence homology to the other MT-MMPs, suggesting a distinct function for this protein. We have isolated a complete cDNA corresponding to the mouse homologue which includes the signal peptide and a complete pro-domain, features that were lacking from the human form originally isolated.(More)
Membrane-type matrix metalloproteinases (MT-MMP) constitute a subfamily of six distinct membrane-associated MMPs. Although the contribution of MT1-MMP during different steps of cancer progression has been well documented, the significance of other MT-MMPs is rather unknown. We have investigated the involvement of MT4-MMP, a(More)
This study describes the biochemical characterisation of the catalytic domain of membrane-type 6 matrix metalloproteinase (MT6-MMP, MMP25, leukolysin). Its activity towards synthetic peptide substrates, components of the extracellular matrix and inhibitors of MMPs was studied and compared with MT1-MMP, MT4-MMP and stromelysin-1. We have found that MT6-MMP(More)
p300 is a transcriptional cofactor and prototype histone acetyltransferase involved in regulating multiple cellular processes. We generated p300 deficient (p300-) cells from the colon carcinoma cell line HCT116 by gene targeting. Comparison of epithelial and mesenchymal proteins in p300- with parental HCT116 cells showed that a number of genes involved in(More)
The role of matrix metalloproteinases in the degradative events invoked in the cartilage and bone of arthritic joints has long been appreciated and attempts at the development of proteinase inhibitors as potential therapeutic agents have been made. However, the spectrum of these enzymes orchestrating connective tissue turnover and general biology is much(More)
Oncostatin M receptor (OSMR) shows frequent copy number gain and overexpression in advanced cervical squamous cell carcinoma (SCC). We used cell-based in vitro assays, RNA interference, and integrative gene expression profiling to investigate the functional significance of this observation. CaSki and SW756 were selected as representative cervical SCC cells(More)
Angiogenesis, the formation of new blood vessels, is an essential process for tumour progression and is an area of significant therapeutic interest. Different in vitro systems and more complex in vivo systems have been described for the study of tumour angiogenesis. However, there are few human 3D in vitro systems described to date which mimic the cellular(More)