W. Nicholas Delgass

Learn More
A hybrid hydrogen-carbon (H(2)CAR) process for the production of liquid hydrocarbon fuels is proposed wherein biomass is the carbon source and hydrogen is supplied from carbon-free energy. To implement this concept, a process has been designed to co-feed a biomass gasifier with H(2) and CO(2) recycled from the H(2)-CO to liquid conversion reactor. Modeling(More)
The water-gas shift (WGS) reaction rate per total mole of Au under 7% CO, 8.5% CO(2), 22% H(2)O, and 37% H(2) at 1 atm for Au/Al(2)O(3) catalysts at 180 °C and Au/TiO(2) catalysts at 120 °C varies with the number average Au particle size (d) as d(-2.2±0.2) and d(-2.7±0.1), respectively. The use of nonporous and crystalline, model Al(2)O(3) and TiO(2)(More)
The theme of this work is to enhance the performance of a primary reaction system by introducing dual-functionality into a packed-bed reactor via a spatial pattern. This paper focuses on a generic system in which the primary reaction is equilibrium-limited and an auxiliary reaction is incorporated to act as a drain-o! mechanism alleviating the equilibrium(More)
Keywords: H2CAR process Hybrid hydrogen–carbon process Biofuels Hydrogen Biomass Transportation fuels Thermochemical Biological processes a b s t r a c t For a successful large scale implementation of biomass-to-liquid fuel for transportation, it is imperative that production of liquid fuel from biomass be maximized. For this purpose, synergistic processes(More)
We have estimated sun-to-fuel yields for the cases when dedicated fuel crops are grown and harvested to produce liquid fuel. The stand-alone biomass to liquid fuel processes, that use biomass as the main source of energy, are estimated to produce one-and-one-half to three times less sun-to-fuel yield than the augmented processes. In an augmented process,(More)
The effects of adsorbate coverage on catalytic surface reactions are not well understood. Here, we contrast the rates of O2 and NO2 dissociations, two competing reactions in NO oxidation catalysis, versus oxygen coverage at a Pt(111) surface. In situ x-ray photoelectron spectroscopy experiments show that the NO2 dissociation rate is less sensitive to O(More)
Au/TiO(2) catalysts used in the water-gas shift (WGS) reaction at 120 °C, 7% CO, 22% H(2)O, 9% CO(2), and 37% H(2) had rates up to 0.1 moles of CO converted per mole of Au per second. However, the rate per mole of Au depends strongly on the Au particle size. The use of a nonporous, model support allowed for imaging of the active catalyst and a precise(More)