Learn More
A hybrid hydrogen-carbon (H(2)CAR) process for the production of liquid hydrocarbon fuels is proposed wherein biomass is the carbon source and hydrogen is supplied from carbon-free energy. To implement this concept, a process has been designed to co-feed a biomass gasifier with H(2) and CO(2) recycled from the H(2)-CO to liquid conversion reactor. Modeling(More)
We have estimated sun-to-fuel yields for the cases when dedicated fuel crops are grown and harvested to produce liquid fuel. The stand-alone biomass to liquid fuel processes, that use biomass as the main source of energy, are estimated to produce one-and-one-half to three times less sun-to-fuel yield than the augmented processes. In an augmented process,(More)
The reaction site time yields (STYs, normalized to CO chemisorption sites) and product selectivity were measured for a series of bimetallic, multiwalled carbon nanotube supported PtCo catalysts with varying Pt/Co ratios for aqueous phase glycerol reforming. The STYs for all products increased by factors of around 2 for PtCo 1:0.5 and 1:1, and a factor of 4(More)
Keywords: H2CAR process Hybrid hydrogen–carbon process Biofuels Hydrogen Biomass Transportation fuels Thermochemical Biological processes a b s t r a c t For a successful large scale implementation of biomass-to-liquid fuel for transportation, it is imperative that production of liquid fuel from biomass be maximized. For this purpose, synergistic processes(More)
The water-gas shift (WGS) reaction rate per total mole of Au under 7% CO, 8.5% CO(2), 22% H(2)O, and 37% H(2) at 1 atm for Au/Al(2)O(3) catalysts at 180 °C and Au/TiO(2) catalysts at 120 °C varies with the number average Au particle size (d) as d(-2.2±0.2) and d(-2.7±0.1), respectively. The use of nonporous and crystalline, model Al(2)O(3) and TiO(2)(More)
The theme of this work is to enhance the performance of a primary reaction system by introducing dual-functionality into a packed-bed reactor via a spatial pattern. This paper focuses on a generic system in which the primary reaction is equilibrium-limited and an auxiliary reaction is incorporated to act as a drain-o! mechanism alleviating the equilibrium(More)
A fast-pyrolysis probe/tandem mass spectrometer combination was utilized to determine the initial fast-pyrolysis products for four different selectively (13)C-labeled cellobiose molecules. Several products are shown to result entirely from fragmentation of the reducing end of cellobiose, leaving the nonreducing end intact in these products. These findings(More)
Operando X-ray absorption experiments and density functional theory (DFT) calculations are reported that elucidate the role of copper redox chemistry in the selective catalytic reduction (SCR) of NO over Cu-exchanged SSZ-13. Catalysts prepared to contain only isolated, exchanged Cu(II) ions evidence both Cu(II) and Cu(I) ions under standard SCR conditions(More)