W. L. Whaley

Learn More
The Huntington disease (HD) phenotype is associated with expansion of a trinucleotide repeat in the IT15 gene, which is predicted to encode a 348-kDa protein named huntington. We used polyclonal and monoclonal anti-fusion protein antibodies to identify native huntingtin in rat, monkey, and human. Western blots revealed a protein with the expected molecular(More)
The discovery of D4S10, an anonymous DNA marker genetically linked to Huntington's disease (HD), introduced the capacity for limited presymptomatic diagnosis in this late-onset neurodegenerative disorder and raised the hope of cloning and characterizing the defect based on its chromosomal location. Progress on both fronts has been limited by the absence of(More)
The genetic defect causing Huntington disease (HD) has been mapped to 4p16.3 by linkage analysis using DNA markers. Two apparently contradictory classes of recombination events in HD kindreds preclude precise targeting of efforts to clone the disease gene. Here, we report a new recombination event that increases support for an internal candidate region of(More)
Five highly informative multiallele restriction fragment length polymorphisms (RFLPs) of value for preclinical diagnosis of Huntington's disease (HD) have been genetically characterized. One RFLP was uncovered by expansion of the D4S43 locus while three others are at D4S111 and D4S115, loci defined by NotI-linking clones. The final marker, D4S125,(More)
The sequences of three cosmids (90 kilobases) from the Huntington's disease region in chromosome 4p16.3 have been determined. A 30,837 base overlap of DNA sequenced from two individuals was found to contain 72 DNA sequence polymorphisms, an average of 2.3 polymorphisms per kilobase (kb). The assembled 58 kb contig contains 62 Alu repeats, and eleven(More)
Huntington's disease (HD) chromosomes contain an expanded unstable (CAG)n repeat in chromosome 4p16.3. We have examined nine families with potential de novo expression of the disease. With one exception, all of the affected individuals had 42 or more repeat units, well above the normal range. In four families, elderly unaffected relatives inherited the same(More)
Huntington disease (HD) is caused by a genetic defect distal to the anonymous DNA marker D4S10 in the terminal cytogenetic subband of the short arm of chromosome 4 (4p16.3). The effort to identify new markers linked to HD has concentrated on the use of somatic cell hybrid panels that split 4p16.3 into proximal and distal portions. Here we report two new(More)
The Huntington disease (HD) gene has been mapped 4 cM distal to D4S10 within the telomeric chromosome band, 4p16.3. The published physical map of this region extends from D4S10 to the telomere but contains two gaps of unknown size. Recombination events have been used to position the HD mutation with respect to genetic markers within this region, and one(More)
The Huntington's disease gene (HD) maps distal to the D4S10 marker in the terminal 4p16.3 subband of chromosome 4. Directed cloning has provided several DNA segments that have been grouped into three clusters on a physical map of approximately 5 X 10(6) bp in 4p16.3. We have typed RFLPs in both reference and HD pedigrees to produce a fine-structure genetic(More)
The dominant gene defect in Huntington's disease (HD) is linked to the DNA marker D4S10, near the telomere of the chromosome 4 short arm. Two other markers, D4S43 and D4S95, are closer, but still proximal to the HD gene in 4p16.3. We have characterized a new locus, D4S114, identified by cloning the end of a NotI fragment resolved by pulsed-field gel(More)