Learn More
In neocortical brain slices of the rat that were exposed to 50 microM picrotoxin, low-intensity stimuli evoked all-or-none epileptiform events that propagated across the slice with an average velocity of 0.07 m/s. Simultaneous recordings from pairs of electrodes, in which one was held in a constant position and the other was systematically advanced across(More)
Extracellular potassium concentration, [K(+)](o), and intracellular calcium, [Ca(2+)](i), rise during neuron excitation, seizures and spreading depression. Astrocytes probably restrain the rise of K(+) in a way that is only partly understood. To examine the effect of glial K(+) uptake, we used a model neuron equipped with Na(+), K(+), Ca(2+) and Cl(-)(More)
To explore non-synaptic mechanisms in paroxysmal discharges, we used a computer model of a simplified hippocampal pyramidal cell, surrounded by interstitial space and a "glial-endothelial" buffer system. Ion channels for Na+, K+, Ca2+ and Cl- ion antiport 3Na/Ca, and "active" ion pumps were represented in the neuron membrane. The glia had "leak"(More)
As described by others, an extracellular calcium-sensitive non-selective cation channel ([Ca(2+)](o)-sensitive NSCC) of central neurons opens when extracellular calcium level decreases. An other non-selective current is activated by rising intracellular calcium ([Ca(2+)]( i )). The [Ca(2+)](o)-sensitive NSCC is not dependent on voltage and while it is(More)
Intracellular calcium levels ([Ca2+]i) during and following electrical activity of the neuroendocrine caudodorsal cells of the pond snail (Lymnaea stagnalis) were measured in situ and is dissociated cells by combining electrical recordings and Fura-2 measurements. Caudodorsal cells are typical neuroendocrine cells that control egg laying via the release of(More)
  • 1