Learn More
The membrane stabilization effect of cholesteryl hemisuccinate (CHEMS) and the sensitivity of the CHEMS-phosphatidylethanolamine membranes to protons and calcium ions were studied by differential scanning calorimetry, freeze-fracture electron microscopy, and 31P NMR. (1) At neutral pH, the addition of 8 mol % CHEMS to transesterified egg(More)
Liposomes can be prepared by a combination of reverse phase evaporation and sequential extrusion through polycarbonate membranes. The vesicles have diameters in the range 0.05-0.5 micron and are mostly unilamellar as indicated by electon microscopy, capture volume, and availability of reactive groups to periodate oxidation. Sequential extrusion leads to a(More)
Liposomes of defined size and homogeneity have been prepared by sequential extrusion of the usual multilamellar vesicles through polycarbonate membranes. The process is easy, reproducible, produces no detectable degradation of the phospholipids, and can double the encapsulation efficiency of the liposome preparation. Multilamellar vesicles extruded by this(More)
The interaction of phosphatidylserine vesicles with Ca2+ and Mg2+ has been examined by several techniques to study the mechanism of membrane fusion. Data are presented on the effects of Ca2+ and Mg2+ on vesicle permeability, thermotropic phase transitions and morphology determined by differential scanning calorimetry, X-ray diffraction, and freeze-fracture(More)
Glucagon forms water-soluble lipoprotein particles with dimyristoylglycerophosphocholine at temperatures below the phase-transition temperature of the lipid. The shape and size of this lipoprotein particle were studied by viscometry, sedimentation velocity, sedimentation equilibrium, quasielastic light scattering, and electron microscopy using both(More)
The interaction and mixing of membrane components in sonicated unilamellar vesicles and also non-sonicated multilamellar vesicles prepared from highly purified phospholipids suspended in NaCl solutions has been examined. Electron microscopy and differential scanning calorimetry were used to characterize the extent and kinetics of mixing of membrane(More)