Learn More
Chronic low dose treatment of male rats with cyclophosphamide, an anticancer alkylating agent, damages male germ cells, resulting in greater than 80% peri-implantation progeny loss. Little transcription or repair takes place in the DNA of post-meiotic male germ cells. The spermatozoal genome regains its transcriptional capacity in the fertilized oocyte. We(More)
Although there has been progress in determining the mechanisms by which maternal toxicant exposure affects progeny, there is little information on the actions of drugs administered to the father. We investigated the effects of pre-conceptional paternal exposure to cyclophosphamide, an anti-cancer agent, on embryonic gene activation in the rat. The male(More)
Paternal exposure to chronic low doses of cyclophosphamide, an anticancer agent, results in aberrant embryonic development of the progeny. We hypothesized that paternal exposure to cyclophosphamide disturbs zygotic gene activity regulating proper progression through preimplantation development and that this disturbance results in improper cell-cell(More)
During the growth phase of oogenesis, oocytes acquire the ability to undergo meiotic maturation. Although the molecular basis of this meiotic competence is unknown, specific differences in microtubular organization exist between incompetent and competent mammalian oocytes. Mitogen-activated protein (MAP) kinase has been implicated in microtubular regulation(More)
  • 1