W. H. McDowell

Learn More
N itrogen emissions to the atmosphere due to human ace tivity remain elevated in industrialized regions of the world and are accelerating in many developing regions (Galloway 1995). Although the deposition of sulfur has been reduced over much of the United States and Europe by aggressive environmental protection policies, current nitrogen deposition(More)
Because freshwater covers such a small fraction of the Earth’s surface area, inland freshwater ecosystems (particularly lakes, rivers, and reservoirs) have rarely been considered as potentially important quantitative components of the carbon cycle at either global or regional scales. By taking published estimates of gas exchange, sediment accumulation, and(More)
Rates and reactions of biogeochemical processes vary in space and time to produce both hot spots and hot moments of elemental cycling. We define biogeochemical hot spots as patches that show disproportionately high reaction rates relative to the surrounding matrix, whereas hot moments are defined as short periods of time that exhibit disproportionately high(More)
A comparative (15)N-tracer study of nitrogen dynamics in headwater streams from biomes throughout North America demonstrates that streams exert control over nutrient exports to rivers, lakes, and estuaries. The most rapid uptake and transformation of inorganic nitrogen occurred in the smallest streams. Ammonium entering these streams was removed from the(More)
One of the major impediments to the integration of lentic ecosystems into global environmental analyses has been fragmentary data on the extent and size distribution of lakes, ponds, and impoundments. We use new data sources, enhanced spatial resolution, and new analytical approaches to provide new estimates of the global abundance of surface-water bodies.(More)
This article reports responses of two different forest ecosystems to 9 years (1988–96) of chronic nitrogen (N) additions at the Harvard Forest, Petersham, Massachusetts. Ammonium nitrate (NH4NO3) was applied to a pine plantation and a native deciduous broad-leaved (hardwood) forest in six equal monthly doses (May–September) at four rates: control (no(More)
Human activities have more than doubled the inputs of nitrogen (N) into terrestrial systems globally. The sources and distribution of anthropogenic N, including N fertilization and N fixed during fossil fuel combustion, are rapidly shifting from the temperate zone to a more global distribution. The consequences of anthropogenic N deposition for ecosystem(More)
P. J. MULHOLLAND,* C. S. FELLOWS,t J. L. TANK4 N. B. GRIMM,§ J. R. WEBSTER,! S. K. HAMILTON,** E. MARTI,tt L. ASHKENAS,# W. B. BOWDEN,§§ W. K. DODDS,fI W. H. McDOWELL,*** M. J. PAULttt and B. J. PETERSONftt *Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, U.SA. ^Centre for Catchment and In-Stream Research, Faculty of(More)
Anthropogenic addition of bioavailable nitrogen to the biosphere is increasing and terrestrial ecosystems are becoming increasingly nitrogen-saturated, causing more bioavailable nitrogen to enter groundwater and surface waters. Large-scale nitrogen budgets show that an average of about 20-25 per cent of the nitrogen added to the biosphere is exported from(More)
Stoichiometric analyses can be used to investigate the linkages between N and C cycles and how these linkages influence biogeochemistry at many scales, from components of individual ecosystems up to the biosphere. N-specific NH4 + uptake rates were measured in eight streams using short-term 15N tracer additions, and C to N ratios (C:N) were determined from(More)