W. Douglas Cress

Learn More
The retinoblastoma protein (pRb) is a cell cycle regulator inactivated in most human cancers. Loss of pRb function results from mutations in the gene coding for pRb or for any of its upstream regulators. Although pRb is predominantly known as a cell cycle repressor, our data point to additional pRb functions in cell adhesion. Our data show that pRb(More)
BACKGROUND Histone deacetylase inhibitors (HDACis) are promising anticancer drugs; however, the molecular mechanisms leading to HDACi-induced cell death have not been well understood and no clear mechanism of resistance has been elucidated to explain limited efficacy of HDACis in clinical trials. METHODS AND FINDINGS Here, we show that protein levels of(More)
Cytokine and growth factor signaling pathways involving STAT3 are frequently constitutively activated in many human primary tumors, and are known for the transcriptional role they play in controlling cell growth and cell cycle progression. However, the extent of STAT3's reach on transcriptional control of the genome as a whole remains an important question.(More)
pRb is known as a classic cell cycle regulator whose inactivation is an important initiator of tumorigenesis. However, more recently, it has also been linked to tumor progression. This study defines a role for pRb as a suppressor of the progression to metastasis by upregulating integrin α10. Transcription of this integrin subunit is herein found to be pRb(More)
In previous work, we demonstrated that transcription factor Trim28 (Tripartite motif containing 28) plays a tumor-suppressor role in early-staged adenocarcinoma of the lung due to its ability to restrain transcription of cell cycle-regulating genes. Herein we examine Trim28's role in the epithelial-to-mesenchymal transition (EMT) which is strongly(More)
While mutations in the KRAS oncogene are among the most prevalent in human cancer, there are few successful treatments to target these tumors. It is also likely that heterogeneity in KRAS-mutant tumor biology significantly contributes to the response to therapy. We hypothesized that the presence of commonly co-occurring mutations in STK11 and TP53 tumor(More)
Little is known about the complex signaling architecture of KRAS and the interconnected RAS-driven protein-protein interactions, especially as it occurs in human clinical specimens. This study explored the activated and interconnected signaling network of KRAS mutant lung adenocarcinomas (AD) to identify novel therapeutic targets.Thirty-four KRAS mutant(More)
BACKGROUND The cyclin-dependent kinase inhibitor 3 (CDKN3) has been perceived as a tumour suppressor. Paradoxically, CDKN3 is often overexpressed in human cancer. It was unclear if CDKN3 overexpression is linked to alternative splicing variants or mutations that produce dominant-negative CDKN3. METHODS We analysed CDKN3 expression and its association with(More)
The CDK/Rb/E2F pathway is commonly disrupted in lung cancer, and thus, it is predicted that blocking the E2F pathway would have therapeutic potential. To test this hypothesis, we have examined the activity of HLM006474 (a small molecule pan-E2F inhibitor) in lung cancer cell lines as a single agent and in combination with other compounds. HLM006474 reduces(More)
We previously characterized the retinoblastoma tumor suppressor protein (Rb) as a regulator of adherens junction assembly and cell-to-cell adhesion in osteoblasts. This is a novel function since Rb is predominantly known as a cell cycle repressor. Herein, we characterized the molecular mechanisms by which Rb performs this function, hypothesizing that Rb(More)
  • 1