W. D. Splettstoesser

Learn More
The zoonotic disease tularemia is caused by the bacterium Francisella tularensis. This pathogen is considered as a category A select agent with potential to be misused in bioterrorism. Molecular typing based on DNA-sequence like canSNP-typing or MLVA has become the accepted standard for this organism. Due to the organism's highly clonal nature, the current(More)
Francisella tularensis subsp. holarctica isolates from Austria, Germany, Hungary, Italy, and Romania were placed into an existing phylogeographic framework. Isolates from Italy were assigned to phylogenetic group B.FTNF002-00; the other isolates, to group B.13. Most F. tularensis subsp. holarctica isolates from Europe belong to these 2 geographically(More)
BACKGROUND Tularemia re-emerged in Germany starting in 2004 (with 39 human cases from 2004 to 2007) after over 40 years of only sporadic human infections. The reasons for this rise in case numbers are unknown as is the possible reservoir of the etiologic agent Francisella (F.) tularensis. No systematic study on the reservoir situation of F. tularensis has(More)
The analysis of large-scale gene expression profiles is still a demanding and extensive task. Modern machine learning and data mining techniques developed in linear algebra, like Independent Component Analysis (ICA), become increasingly popular as appropriate tools for analyzing microarray data. We applied ICA to analyze kinetic gene expression profiles of(More)
In November 2005, an outbreak of tularemia occurred among 39 participants in a hare hunt in Hesse, Germany. Previously reported tularemia outbreaks in Germany dated back to the 1950s. We conducted a retrospective cohort study among participants and investigated the environment to identify risk factors for infection. Ten participants had serologic evidence(More)
BACKGROUND Francisella (F.) tularensis is the causative agent of tularemia. Due to its low infectious dose, ease of dissemination and high case fatality rate, F. tularensis was the subject in diverse biological weapons programs and is among the top six agents with high potential if misused in bioterrorism. Microbiological diagnosis is cumbersome and(More)
Here, we describe the genome sequence of the Francisella tularensis subsp. holarctica strain F92, belonging to the Franco-Iberian subgroup. This strain represents the first-time isolate of this subgroup in Germany and was obtained from naturally infected marmosets. Citation Antwerpen MH, Schacht E, Kaysser P, Splettstoesser WD. 2013. Complete genome(More)
The acute disease antigen A (adaA) gene is believed to be associated with Coxiella burnetii strains causing acute Q fever. The detailed analysis of the adaA genomic region of 23 human- and 86 animal-derived C. burnetii isolates presented in this study reveals a much more polymorphic appearance and distribution of the adaA gene, resulting in a classification(More)
We describe a case of human tularemia caused by Francisella tularensis subsp. holarctica in a stem cell transplant recipient with chronic graft-versus-host disease who was receiving levofloxacin prophylaxis. The infection was characterized by pneumonia with septic complications. The patient was successfully treated with doxycycline.
  • 1