Learn More
Several lines of evidence implicate the E2F transcription factor as an important component of cell proliferation control. First, E2F binding sites are found in the promoters of genes responsive to proliferation signals and the level of E2F binding activity increases at a time when many of these genes are activated. Second, the tumour suppressor protein Rb,(More)
Activator proteins that control transcription initiation by RNA polymerase II usually have two domains: one binds to DNA, and the other activates transcription. A particularly potent acidic activation domain at the C terminus of the herpes simplex virus protein VP16 binds directly and selectively to the human and yeast TATA box-binding factor TFIID. We have(More)
The interaction between the chimeric activator GAL4-VP16, consisting of the DNA binding domain of GAL4 and the acidic activation domain of VP16, and its target in the transcriptional machinery was studied in vitro. GAL4-VP16 stimulated transcription from a promoter bearing GAL4 sites, and greatly inhibited transcription from a promoter bearing binding sites(More)
Virion protein 16 (VP16) of herpes simplex virus type 1 contains an acidic transcriptional activation domain. Missense mutations within this domain have provided insights into the structural elements critical for its function. Net negative charge contributed to, but was not sufficient for, transcriptional activation by VP16. A putative amphipathic alpha(More)
The cellular transcription factor E2F appears to be a target for the regulatory action of the retinoblastoma tumor suppressor gene product. The recent isolation of the E2F1 cDNA clone, which encodes a polypeptide with properties characteristic of E2F, has now allowed a more detailed analysis of the regulation of E2F function by Rb as well as the Rb-related(More)
pRb is known as a classic cell cycle regulator whose inactivation is an important initiator of tumorigenesis. However, more recently, it has also been linked to tumor progression. This study defines a role for pRb as a suppressor of the progression to metastasis by upregulating integrin α10. Transcription of this integrin subunit is herein found to be pRb(More)
  • 1