Learn More
Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data(More)
It is difficult to find references to fire in general textbooks on ecology, conservation biology or biogeography, in spite of the fact that large parts of the world burn on a regular basis, and that there is a considerable literature on the ecology of fire and its use for managing ecosystems. Fire has been burning ecosystems for hundreds of millions of(More)
• We aimed to identify the limits of savanna across Africa, Australia and South America. We based our investigation on the rich history of hypotheses previously examined: that the limits of savanna are variously determined by rainfall, rainfall seasonality, soil fertility and disturbance. • We categorized vegetation on all continents as 'savanna' (open(More)
Stable carbon (d 13 C) and nitrogen (d 15 N) isotope ratios are commonly used to reconstruct palaeodiets and palaeoenvironments. The method is based on our knowledge of isotopic patterns in plants, which are subject to taxonomic and environmental variability. While previous researchers have addressed isotopic variability amongst plants, no studies have(More)
Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may(More)
Traits, such as resprouting, serotiny and germination by heat and smoke, are adaptive in fire-prone environments. However, plants are not adapted to fire per se but to fire regimes. Species can be threatened when humans alter the regime, often by increasing or decreasing fire frequency. Fire-adaptive traits are potentially the result of different(More)
The intermediate disturbance hypothesis is a widely accepted generalization regarding patterns of species diversity, but may not hold true where fire is the disturbance. In the Mediterranean-climate shrublands of South Africa, called fynbos, fire is the most importance disturbance and a controlling factor in community dynamics. The intermediate disturbance(More)
The extinction of large vertebrates in the last few millennia has left a legacy of evolutionary anachronisms. Among these are plant structural defences that persist long after the extinction of the browsers. A peculiar, and controversial, example is a suite of traits common in divaricate (wide-angled branching) plants from New Zealand. Divaricate(More)
The origin of fire-adapted lineages is a long-standing question in ecology. Although phylogeny can provide a significant contribution to the ongoing debate, its use has been precluded by the lack of comprehensive DNA data. Here, we focus on the 'underground trees' (=geoxyles) of southern Africa, one of the most distinctive growth forms characteristic of(More)