Learn More
Major histocompatibility complex class I (MHC-I) molecules are critically important in the host defense against various pathogens through presentation of viral peptides to cytotoxic T lymphocytes (CTLs), a process resulting in the destruction of virus-infected cells. Herpesviruses interfere with CTL-mediated elimination of infected cells by various(More)
Equid herpesvirus type 1 (EHV-1) was shown to use an unusual receptor for cellular entry - MHC-I molecules. Here, we demonstrated that the closely related EHV, EHV-4, also uses this strategy for cellular invasion, both in equine cells in culture and in the heterologous, non-permissive murine mastocytoma cell line (P815) after stable transfection with horse(More)
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid implicated in diverse cellular functions including survival, proliferation, tumorigenesis, inflammation, and immunity. Sphingosine kinase (SphK) contributes to these functions by converting sphingosine to S1P. We report here that the nonstructural protein NS3 from bovine viral diarrhea virus (BVDV),(More)
Infection with bovine viral diarrhea virus (BVDV) causes different effects depending on its biotype in vitro; cytopathogenic (cp) strains induce apoptosis, type I interferon (IFN), and various stress-mediated responses, whereas non-cytopathogenic (ncp) strains do not. However, comprehensive transcriptional profiles of the cells infected with BVDV are still(More)
The equine herpesviruses type 1 (EHV-1) and 4 (EHV-4) are ubiquitous pathogens that affect horse populations on all continents. Despite widespread vaccination, EHV-1 and EHV-4 infections remain a permanent risk. While the two viruses share a high degree of genetic and antigenic similarity, they differ significantly in host range and pathogenicity. Compared(More)
Equine herpesvirus 4 (EHV-4) is a major cause of respiratory tract disease in horses worldwide. The generation of recombinant viruses, which would lead to understanding of viral gene functions, has been hindered by the absence of suitable cell lines and small-animal models of the infection. In the present study, the genome of EHV-4 strain TH20p was cloned(More)
Equine herpesvirus type 1 (EHV-1) and EHV-4 are genetically and antigenically very similar, but their pathogenic potentials are strikingly different. The differences in pathogenicity between both viruses seem to be reflected in cellular host range: EHV-1 can readily be propagated in many cell types of multiple species, while EHV-4 entry and replication(More)
Equine herpesvirus type 1 (EHV-1) was detected in an Indian rhinoceros (Rhinoceros unicornis), which was euthanized because of severe neurological disease. Encephalitis was suspected and EHV-1 DNA was detected in brain, lung, and spleen tissues. The viral IR6 protein was detected in lung tissues by Western blot analysis. Phylogenetic analyses of EHV-1(More)
Herpesviruses enter cells either by direct fusion at the plasma membrane or from within endosomes, depending on the cell type and receptor(s). We investigated two closely related herpesviruses of horses, equine herpesvirus type 1 (EHV-1) and EHV-4, for which the cellular and viral determinants routing virus entry are unknown. We show that EHV-1 enters(More)