W Allan Gillespie

Learn More
We report subpicosecond electro-optic measurements of the length of individual relativistic electron bunches. The longitudinal electron-bunch shape is encoded electro-optically on to the spectrum of a chirped laser pulse. The electron-bunch length is determined by analyzing individual laser-pulse spectra obtained with and without the presence of an electron(More)
Electro-optic detection of the Coulomb field of a relativistic electron bunch combined with single-shot cross correlation of optical pulses is used to enable single-shot measurements of the shape and length of femtosecond electron bunches. This method overcomes a fundamental time-resolution limit of previous single-shot electro-optic measurements, which(More)
A technique for noncollinear cross correlation of electro-optic modulated optical pulses is presented for the single-shot characterization of terahertz waveforms and is compared to established electro-optic terahertz characterization methods. This technique is free from the limitations on time resolution and faithful reproduction of previously demonstrated(More)
The longitudinal profiles of ultrashort relativistic electron bunches at the soft x-ray free-electron laser FLASH have been investigated using two single-shot detection schemes: an electro-optic (EO) detector measuring the Coulomb field of the bunch and a radio-frequency structure transforming the charge distribution into a transverse streak. A comparison(More)
Picosecond (~10 ps) pulsed laser irradiation at 532 nm led to the efficient and scalable fabrication of dichroic areas in glass with spherical silver nanoparticles of ~30 - 40 nm in diameter embedded in a surface layer of thickness ~20 μm. The observed dichroism is due to the uniform and permanent shape transformation of the nanoparticles - from spherical(More)
The electro-optic effect between an ultrafast optical probe pulse and an ultrashort terahertz pulse is shown to depend on the time derivatives of the product of the probe and terahertz electric fields. Application of this theory to temporally resolved single-shot terahertz detection techniques, where the electro-optic effect is temporally localized within(More)
We investigate the enhancement of the diffraction efficiency of dynamic gratings recorded in a bismuth silicon oxide crystal at large modulation by the moving-grating technique. The optimum fringe velocity for maximum diffraction efficiency and the degree of enhancement of the diffraction efficiency at optimum fringe velocity are experimentally found to be(More)
Holographic recording with orthogonally polarized beams in a cesium-doped KNSBN [(K0.5Na0.5)0.2(Sr0.75Ba0.25)0.9Nb2O6] crystal has been studied. It was found that this kind of photorefractive crystal possesses high linear dichroism, which makes it suitable for use in polarization holography. The diffraction efficiency as a function of the polarization(More)