Władysława Stremińska

Learn More
The skeletal muscle injury triggers the inflammatory response which is crucial for damaged muscle fiber degradation and satellite cell activation. Immunodeficient mice are often used as a model to study the myogenic potential of transplanted human stem cells. Therefore, it is crucial to elucidate whether such model truly reflects processes occurring under(More)
Understanding the mechanism of stem cell mobilization into injured skeletal muscles is a prerequisite step for the development of muscle disease therapies. Many of the currently studied stem cell types present myogenic potential; however, when introduced either into the blood stream or directly into the tissue, they are not able to efficiently engraft(More)
Formation of mammalian skeletal muscle myofibers, that takes place during embryogenesis, muscle growth or regeneration, requires precise regulation of myoblast adhesion and fusion. There are few evidences showing that adhesion proteins play important role in both processes. To follow the function of these molecules in myoblast differentiation we analysed(More)
BACKGROUND The skeletal muscle has the ability to regenerate after injury. This process is mediated mainly by the muscle specific stem cells, that is, satellite cells. In case of extensive damage or under pathological conditions, such as muscular dystrophy, the process of muscle reconstruction does not occur properly. The aim of our study was to test(More)
  • 1