Learn More
The large spectral channels at millimeter wave (mmWave) frequencies provide a means of achieving much higher data rates in vehicular communication systems. High data rates can be used for exchanging low-level sensing data (i.e., without much processing) or for infotainment applications to improve traffic safety and efficiency as well as user experience(More)
Millimeter wave (mmWave) has great potential in realizing high data rate thanks to the large spectral channels. It is considered as a key technology for the fifth generation wireless networks and is already used in wireless LAN (e.g., IEEE 802.11ad). Using mmWave for vehicular communications, however, is often viewed with some skepticism due to a(More)
The availability of large bandwidth at millimeter wave (mmWave) frequencies makes mmWave an ideal candidate to realize multi-Gbps data rates. MmWave has been applied to indoor applications (e.g. IEEE 802.11ad), and it is also being considered for cellular. There is not much work, however, in applying mmWave to vehicular channels. This is likely due to the(More)
Efficient beam alignment is a crucial component in millimeter wave systems with analog beamforming, especially in fast-changing vehicular settings. This paper uses the vehicle’s position (e.g., available via GPS) to query the multipath fingerprint database, which provides prior knowledge of potential pointing directions for reliable beam alignment. The(More)
Configuring the antenna arrays is the main source of overhead in millimeter wave (mmWave) communication systems. In high mobility scenarios, the problem is exacerbated, as achieving the highest rates requires frequent link reconfiguration. One solution is to exploit spatial congruence between signals at different frequency bands and extract mmWave channel(More)
Millimeter wave (mmWave) is an attractive option for high data rate applications. Enabling mmWave communications requires appropriate beamforming, which is conventionally realized by a lengthy beam training process. Such beam training will be a challenge for applying mmWave to mobile environments. As a solution, a beam tracking method requiring to train(More)