Volodymyr M Kysil

Learn More
A series of novel 8-sulfonyl-substituted 2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indoles (THPI) has been synthesized and their ability to interact with 5-HT(6) receptors evaluated in cell-based and radioligand binding assays. Amongst evaluated THPIs, compounds 9.HCl and 20.HCl have been identified as the most potent 5-HT(6) receptor antagonists with K(i) values(More)
From the authors' 650,000 compound collection, they have selected approximately 15,000 potential small-molecule protease inhibitors, which were subjected to high-throughput screening against caspase-3. The screening yielded a series of hits that belong to 11 different scaffolds. Based on the structure of one of the hits, a new class of the small-molecule(More)
When studying cysteinyl proteases in general and caspases in particular, it is generally accepted that a reaction buffer must contain a reducing agent to prevent essential cysteinyl groups from spontaneous oxidation. Dithiothreitol (DTT) and beta-mercaptoethanol (beta-MCE) are 2 of the most broadly used reducing agents. While screening a library of small(More)
Syntheses, biological evaluation as 5-HT(6) receptor (5-HT(6)R) antagonists, and structure-activity relationships for a series of novel 5,7-disubstituted (3-arylsulfonyl-pyrazolo[1,5-a]pyrimidins are disclosed. The molecule conformational flexibility in the series is restricted by formation of the intramolecular hydrogen bond between 3-sulfo and(More)
Syntheses, biological evaluation, and structure-activity relationships for a series of novel 2-substituted 3-benzenesulfonyl-5,6-dimethyl-pyrazolo[1,5-a]pyrimidines are disclosed. In spite of a wide, four orders of magnitude, SAR range (K(i) varied from 260 pM to 2.96 μM), no significant correlation of 5-HT(6)R antagonistic potency was observed with major(More)
In continuation of studies on 3-(phenylsulfonyl)pyrazolo[1,5-a]pyrimidine derivatives as 5-HT6 receptor antagonists, new compounds with a pyridine moiety in the 5-and/or 7-position were obtained and their antagonistic activity was screened. It was established that the introduced pyridine changed the 5-HT6 activity. Some of the obtained(More)
Synthesis, biological evaluation and structure-activity relationships for a series of 2-substituted 4-methyl-8-(morpholine-4-sulfonyl)-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c]quinolines are described. These compounds represent a new chemotype of nonpeptide small molecule inhibitors of caspase-3. Among the studied compounds, several potent inhibitors with(More)
Synthesis, biological evaluation and structure-activity relationships for a series of novel gamma-carboline analogues of Dimebon are described. Among the studied compounds, gamma-carbolines 3{8} and 3{14} have been identified as potent small molecule antagonists of histamine H(1) (IC(50)=0.1 microM) and serotonin 5-HT(6) (IC(50)=0.37 microM) receptors,(More)
A convenient synthesis of novel 8-sulfonyl-1,3-dioxo-4-methyl-2,3-dihydro-1H-pyrrolo[3,4-c]quinolines is described. As key steps to assemble the target molecular scaffold, our method features (a) Pfitzinger reaction of isatin-5-sulfonate 1 with methyl 3-oxo-3-phenylpropanoate, (b) formation of 1-(1H-pyrazol-4-yl)-1H-pyrrole-2,5-dione intermediate 5, and (c)(More)
5-HT(6) receptors are exclusively localized in the CNS and have high affinity with many psychotropic agents. Though the role of this receptor in many CNS diseases is widely anticipated, lack of definite progress in the development of 5-HT(6) receptor-oriented drugs indicates a need for further discoveries of novel chemotypes with high potency and high(More)