Learn More
The brain has the ability to represent the passage of time between two behaviorally relevant events. Recordings from different areas in the cortex of monkeys suggest the existence of neurons representing time by increasing (climbing) activity, which is triggered by a first event and peaks at the expected time of a second event, e.g., a visual stimulus or a(More)
We discuss paradigmatic properties of the activity of single cells comprising an attractor-a developed stable delay activity distribution. To demonstrate these properties and a methodology for measuring their values, we present a detailed account of the spike activity recorded from a single cell in the inferotemporal cortex of a monkey performing a delayed(More)
Macaque monkeys were tested on a delayed-match-to-multiple-sample task, with either a limited set of well trained images (in randomized sequence) or with never-before-seen images. They performed much better with novel images. False positives were mostly limited to catch-trial image repetitions from the preceding trial. This result implies extremely(More)
Macaque monkeys were trained to recognize the repetition of one of the images already seen in a sequence of random length. On average, performance decreased with sequence length. However, this was due to a complex combination of factors, as follows: performance was found to decrease with the separation in the sequence of the test (repetition image) from the(More)
What mechanism underlies serial order memory? Studying preverbal serial memory shows that macaque monkeys reproducing a sequence of items can acquire knowledge of item ordinal position. In our previous experiment, macaques were repeatedly presented with image lists (first shown sequentially and then simultaneously on a touch screen together with a(More)
Serial memory is the ability to encode and retrieve a list of items in their correct temporal order. To study nonverbal strategies involved in serial memory, we trained four macaque monkeys on a novel delayed sequence-recall task and analysed the mechanisms underlying their performance in terms of a neural network model. Thirty fractal images, divided into(More)
Delay match to sample (DMS) experiments provide an important link between the theory of recurrent network models and behavior and neural recordings. We define a simple recurrent network of binary neurons with stochastic neural dynamics and Hebbian synaptic learning. Most DMS experiments involve heavily learned images, and in this setting we propose a(More)
The Delay-Match-to-Sample (DMS) task has been used in countless studies of memory, undergoing numerous modifications, making the task more and more challenging to participants. The physiological correlate of memory is modified neural activity during the cue-to-match delay period reflecting reverberating attractor activity in multiple interconnected cells.(More)