Volker Westphal

Learn More
We present video-rate (28 frames per second) far-field optical imaging with a focal spot size of 62 nanometers in living cells. Fluorescently labeled synaptic vesicles inside the axons of cultured neurons were recorded with stimulated emission depletion (STED) microscopy in a 2.5-micrometer by 1.8-micrometer field of view. By reducing the cross-sectional(More)
We undertake a comprehensive study of the inverse square root dependence of spatial resolution on the saturation factor in stimulated emission depletion (STED) microscopy and generalize it to account for various focal depletion patterns. We used an experimental platform featuring a high quality depletion pattern which results in operation close to the(More)
Synaptic transmission is mediated by neurotransmitters that are stored in synaptic vesicles and released by exocytosis upon activation. The vesicle membrane is then retrieved by endocytosis, and synaptic vesicles are regenerated and re-filled with neurotransmitter. Although many aspects of vesicle recycling are understood, the fate of the vesicles after(More)
Synaptic vesicles need to be mobile to reach their release sites during synaptic activity. We investigated vesicle mobility throughout the synaptic vesicle cycle using both conventional and subdiffraction-resolution stimulated emission depletion fluorescence microscopy. Vesicle tracking revealed that recently endocytosed synaptic vesicles are highly mobile(More)
OBJECTIVE To assess the accuracy of classification of narrow anterior chamber (AC) angles using quantitative imaging by optical coherence tomography (OCT) and ultrasound biomicroscopy (UBM). DESIGN Observational comparative study. METHODS A high-speed (4000 axial scans/s) anterior segment OCT prototype was developed using a 1.3-microm light source.(More)
Utilizing single fluorescent molecules as probes, we prove the ability of a far-field microscope to attain spatial resolution down to 16 nm in the focal plane, corresponding to about 1/50 of the employed wavelength. The optical bandwidth expansion by nearly an order of magnitude is realized by a saturated depletion through stimulated emission of the(More)
We report on fast beam-scanning stimulated-emission-depletion (STED) microscopy in the visible range using for resolution enhancement compact, low cost and turn-key continuous wave (CW) fiber lasers emitting at 592 nm. Spatial resolutions of 35 to 65 nm in the focal plane are shown for various samples including fluorescent nanoparticles, immuno-stained(More)
BACKGROUND Recent advances in high-speed scanning technology have enabled a new generation of optical coherence tomographic (OCT) systems to perform imaging at video rate. Here, a handheld OCT probe capable of imaging the anterior segment of the eye at high frame rates is demonstrated for the first time. OBJECTIVE To demonstrate real-time OCT imaging of(More)
Applying pulsed excitation together with time-gated detection improves the fluorescence on-off contrast in continuous-wave stimulated emission depletion (CW-STED) microscopy, thus revealing finer details in fixed and living cells using moderate light intensities. This method also enables super-resolution fluorescence correlation spectroscopy with CW-STED(More)
We demonstrate two-color fluorescence microscopy with nanoscale spatial resolution by applying stimulated emission depletion on fluorophores differing in their absorption and emission spectra. Green- and red-emitting fluorophores are selectively excited and quenched using dedicated beam pairs. The stimulated emission depletion beams deliver a lateral(More)