Learn More
The population activity of random networks of excitatory and inhibitory leaky integrate-and-fire neurons has been studied extensively. In particular, a state of asynchronous activity with low firing rates and low pairwise correlations emerges in sparsely connected networks. We apply linear response theory to evaluate the influence of detailed network(More)
Networks are becoming a ubiquitous metaphor for the understanding of complex biological systems, spanning the range between molecular signalling pathways, neural networks in the brain, and interacting species in a food web. In many models, we face an intricate interplay between the topology of the network and the dynamics of the system, which is generally(More)
Different network models have been suggested for the topology underlying complex interactions in natural systems. These models are aimed at replicating specific statistical features encountered in real-world networks. However, it is rarely considered to which degree the results obtained for one particular network class can be extrapolated to real-world(More)
The activity of cortical neurons is determined by the input they receive from presynaptic neurons. Many previous studies have investigated how specific aspects of the statistics of the input affect the spike trains of single neurons and neurons in recurrent networks. However, typically very simple random network models are considered in such studies. Here(More)
The inference of causation from correlation is in general highly problematic. Correspondingly, it is difficult to infer the existence of physical synaptic connections between neurons from correlations in their activity. Covariances in neural spike trains and their relation to network structure have been the subject of intense research, both experimentally(More)
The correlated variability in the responses of a neural population to the repeated presentation of a sensory stimulus is a universally observed phenomenon. Such correlations have been studied in much detail, both with respect to their mechanistic origin and to their influence on stimulus discrimination and on the performance of population codes. In(More)
Balanced networks of excitatory and inhibitory neurons are a popular paradigm to describe the ground state of cortical activity. Although such networks can assume a state of asynchronous and irregular activity with low firing rates and low pairwise correlations, recurrent connectivity inevitably induces correlations between spike trains [1]. To elucidate(More)
  • 1