Volker Hähnke

Learn More
BACKGROUND De novo design of drug-like compounds with a desired pharmacological activity profile has become feasible through innovative computer algorithms. Fragment-based design and simulated chemical reactions allow for the rapid generation of candidate compounds as blueprints for organic synthesis. METHODS We used a combination of complementary(More)
We present a ligand-based virtual screening technique (PhAST) for rapid hit and lead structure searching in large compound databases. Molecules are represented as strings encoding the distribution of pharmacophoric features on the molecular graph. In contrast to other text-based methods using SMILES strings, we introduce a new form of text representation(More)
BACKGROUND Developing structure-activity relationships (SARs) of molecules is an important approach in facilitating hit exploration in the early stage of drug discovery. Although information on millions of compounds and their bioactivities is freely available to the public, it is very challenging to infer a meaningful and novel SAR from that information. (More)
Modulation of protein-protein interactions (PPI) has emerged as a new concept in rational drug design. Here, we present a computational protocol for identifying potential PPI inhibitors. Relevant regions of interfaces (epitopes) are predicted for three-dimensional protein models and serve as queries for virtual compound screening. We present a computational(More)
We present an integrated approach to identify and optimize a novel class of γ-secretase modulators (GSMs) with a unique pharmacological profile. Our strategy included (i) virtual screening through application of a recently developed protocol (PhAST), (ii) synthetic chemistry to discover structure-activity relationships, and (iii) detailed in vitro(More)
Previously, (Hähnke et al., J Comput Chem 2009, 30, 761) we presented the Pharmacophore Alignment Search Tool (PhAST), a ligand-based virtual screening technique representing molecules as strings coding pharmacophoric features and comparing them by global pairwise sequence alignment. To guarantee unambiguity during the reduction of two-dimensional molecular(More)
BACKGROUND Chemical similarity searching allows the retrieval of preferred screening molecules from a compound database. Candidates are ranked according to their similarity to a reference compound (query). Assessing the statistical significance of chemical similarity scores helps prioritizing significant hits, and identifying cases where the database does(More)
PubChem is an open repository for molecular structures, their properties and biological activities [1]. The number of deposited structures has been steadily increasing since its creation in 2004. Today, it contains more than 92 million substances (PubChem Substance) with 32 million unique small molecules (PubChem Compound). Consequently, visual inspection(More)
The text-based similarity searching method Pharmacophore Alignment Search Tool is grounded on pairwise comparisons of potential pharmacophoric points between a query and screening compounds. The underlying scoring matrix is of critical importance for successful virtual screening and hit retrieval from large compound libraries. Here, we compare three(More)