Learn More
DNA methylation at proximal promoters facilitates lineage restriction by silencing cell type-specific genes. However, euchromatic DNA methylation frequently occurs in regions outside promoters. The functions of such nonproximal promoter DNA methylation are unclear. Here we show that the de novo DNA methyltransferase Dnmt3a is expressed in postnatal neural(More)
The postnatal forebrain subventricular zone (SVZ) harbors stem cells that give rise to olfactory bulb interneurons throughout life. The identity of stem cells in the adult SVZ has been extensively debated. Although, ependymal cells were once suggested to have stem cell characteristics, subsequent studies have challenged the initial report and postulated(More)
After cell birth, almost all neurons in the mammalian central nervous system migrate. It is unclear whether and how cell migration is coupled with neurogenesis. Here we report that proneural basic helix-loop-helix (bHLH) transcription factors not only initiate neuronal differentiation but also potentiate cell migration. Mechanistically, proneural bHLH(More)
During development of the CNS, neurons and glia are generated in a sequential manner. The mechanism underlying the later onset of gliogenesis is poorly understood, although the cytokine-induced Jak-STAT pathway has been postulated to regulate astrogliogenesis. Here, we report that the overall activity of Jak-STAT signaling is dynamically regulated in mouse(More)
An overriding principle of development is that neurons become permanently postmitotic once they initiate differentiation. Work in our laboratory, however, has provided evidence for a population of progenitor cells in mammalian forebrain that express properties of differentiated neurons, even though they continue to divide. These neuronal progenitor cells(More)
Mitotically active progenitor cells from the anterior portion of the forebrain subventricular zone (SVZa), which give rise throughout life to olfactory bulb interneurons, bear processes and express neuronal markers. To understand how rodent SVZa neuronal progenitors coordinate division and process formation, we used time-lapse videomicroscopy to analyse the(More)
Human preterm neonates are subjected to repetitive pain during neonatal intensive care. We hypothesized that exposure to repetitive neonatal pain may cause permanent or long-term changes because of the developmental plasticity of the immature brain. Neonatal rat pups were stimulated one, two, or four times each day from P0 to P7 with either needle prick(More)
The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse(More)
Normal development of the nervous system relies on the spatially and temporally well-controlled differentiation of neurons and glia. Here, we discuss the intra- and extracellular molecular mechanisms that underlie the sequential genesis of neurons and glia, emphasizing recent studies describing the role of a signaling molecule, the tyrosine phosphatase(More)
Bone morphogenetic proteins (BMPs), a group of cytokines in the TGF-beta superfamily, have complex regulatory roles in the control of neural proliferation and cell fate decision. In this study, we analyzed the potential role(s) of BMP signaling on the regulation of the proliferation and differentiation of the unique progenitor cells of the neonatal anterior(More)