Vladimir Yu Zaitsev

Learn More
Logarithmic-in-time slow dynamics has been found for individual cracks in a solid. Furthermore, this phenomenon is observed during both the crack acoustic conditioning and the subsequent relaxation. A thermoelastic mechanism is suggested which relates the log-time behavior to the essentially 2D character of the heating and cooling of the crack perimeter and(More)
An experimental observation of a new nonlinear-modulation effect for longitudinal elastic waves is reported. The phenomenon is a direct elastic wave analogy with the so-called Luxemburg-Gorky (L-G) effect known over 60 years for radio waves propagating in the ionosphere. The effect consists of the appearance of modulation of a weaker initially non-modulated(More)
Rectification (demodulation) of high-frequency shear acoustic bursts is applied to probe the distribution of contact forces in 3D granular media. Symmetry principles allow for rectification of the shear waves only with their conversion into longitudinal mode. The rectification is due to nonlinear dynamic dilatancy, which is found to follow a quadratic or(More)
An approach to elastographic mapping in optical coherence tomography (OCT) using comparison of correlation stability of sequentially obtained intensity OCT images of the studied strained tissue is discussed. The basic idea is that for stiffer regions, the OCT image is distorted to a smaller degree. Consequently, cross-correlation maps obtained with(More)
A new mechanism is proposed for the linear and amplitude-dependent dissipation due to elastic-wave-crack interaction. We have observed one of its strong manifestations in a direct elastic-wave analog of the Luxemburg-Gorky effect consisting of the cross modulation of radio waves at the dissipative nonlinearity of the ionosphere plasma. The counterpart(More)
Granular matter exhibits a rich variety of dynamic behaviors, for which the role of thermal fluctuations is usually ignored. Here we show that thermal fluctuations can pronouncedly affect contacting nanoscale asperities at grain interfaces and brightly manifest themselves through the influence on nonlinear-acoustic effects. The proposed mechanism based on(More)
We propose a novel OCT-based method for visualizing microvasculature in three-dimension using reference-free processing of individual complex valued B-scans with highly overlapped A-scans. In the lateral direction of such a B-scan, the amplitude and phase of speckles corresponding to vessel regions exhibit faster variability and, thus, can be detected(More)
We investigated the differences between the decanethiolate gold nanoparticles synthesized by two different routes: one-phase and two-phase methods. Their properties were compared in bulk and at the air-water interface by transmission electron microscopy (TEM), X-ray reflectivity (XR), extended X-ray absorption fine structure (EXAFS) spectroscopy, X-ray(More)
We demonstrated that self-extinguishing polymer nanocomposites, which can pass the stringent UL 94 V0 standard, can be successfully prepared by combining modified organoclays with traditional flame retardant (FR) agents. Using secondary ion mass spectrometry (SIMS) and transmission electron microscopy (TEM), we determined that the addition of modified(More)
The high symmetry and stability of phenalenyl systems, both as the planar pi-radical (P*) and as the pi-cation (P+), are desirable characteristics of prototypical aromatic donor/acceptor pairs that encourage their use as (binary) models for the study of intermolecular interactions extant in stacked molecular arrays. Thus, quantitative ESR spectroscopy of(More)