Vladimir Y. Panin

Learn More
The quality of images reconstructed by statistical iterative methods depends on an accurate model of the relationship between image space and projection space through the system matrix The elements of the system matrix for the clinical Hi-Rez scanner were derived by processing the data measured for a point source at different positions in a portion of the(More)
The objective of this work was to evaluate the lesion detection performance of four fully-3D positron emission tomography (PET) reconstruction schemes using experimentally acquired data. A multi-compartment anthropomorphic phantom was set up to mimic whole-body (18)F-fluorodeoxyglucose (FDG) cancer imaging and scanned 12 times in 3D mode, obtaining count(More)
Simultaneous emission and transmission measurement is appealing in PET due to the matching of geometrical conditions between emission and transmission and reduced acquisition time for the study. A potential problem remains: when transmission statistics are low, attenuation correction could be very noisy. Although noise in the attenuation map can be(More)
A novel approach to reconstructing the principal directions of a diffusion tensor field directly from magnetic resonance imaging (MRI) data using a tensor tomography data acquisition approach was developed. If tensor eigenvalues are assumed to be known, the reconstruction of principal directions requires fewer measurements than the reconstruction of the(More)
This paper investigates data compression methods for time-of-flight (TOF) positron emission tomography (PET), which rebin the 3-D TOF measurements into a set of 2-D TOF data for a stack of transaxial slices. The goal of this work is to develop rebinning algorithms that are more accurate than the TOF single-slice-rebinning (TOF-SSRB) method proposed by(More)
  • 1