Learn More
The quality of images reconstructed by statistical iterative methods depends on an accurate model of the relationship between image space and projection space through the system matrix The elements of the system matrix for the clinical Hi-Rez scanner were derived by processing the data measured for a point source at different positions in a portion of the(More)
The objective of this work was to evaluate the lesion detection performance of four fully-3D positron emission tomography (PET) reconstruction schemes using experimentally acquired data. A multi-compartment anthropomorphic phantom was set up to mimic whole-body (18)F-fluorodeoxyglucose (FDG) cancer imaging and scanned 12 times in 3D mode, obtaining count(More)
The simultaneous PET data reconstruction of emission activity and attenuation coefficient distribution is presented, where the attenuation image is constrained by exploiting an external transmission source. Data are acquired in time-of-flight (TOF) mode, allowing in principle for separation of emission and transmission data. Nevertheless, here all data are(More)
Whole-body PET/CT scanners are important clinical and research tools to study tracer distribution throughout the body. In whole-body studies, respiratory motion results in image artifacts. We have previously demonstrated for brain imaging that, when provided with accurate motion data, event-by-event correction has better accuracy than frame-based methods.(More)
LSO scintillators (Lu2Sio5:Ce) have a background radiation which originates from the isotope Lu-176 that is present in natural occurring lutetium. The decay that occurs in this isotope is a beta decay that is in coincidence with cascade gamma emissions with energies of 307,202 and 88 keV. The coincidental nature of the beta decay with the gamma emissions(More)
Previously we developed algorithm to obtain transmission reconstructions from emission data without transmission measurements. The optimal basis set of " knowledge set " was used to create an approximate attenuation map, and the expansion coefficients were estimated using optimization algorithm. Since a truncated expansion does not represent an image(More)
Simultaneous emission and transmission measurement is appealing in PET due to the matching of geometrical conditions between emission and transmission and reduced acquisition time for the study. A potential problem remains: when transmission statistics are low, attenuation correction could be very noisy. Although noise in the attenuation map can be(More)
Tensor tomography is being investigated as a technique for reconstruction of in vivo diffusion tensor fields that can potentially be used to reduce the number of magnetic resonance imaging (MRI) measurements. Specifically, assessments are being made of the reconstruction of cardiac diffusion tensor fields from 3D Radon planar projections using a filtered(More)
A novel approach to reconstructing the principal directions of a diffusion tensor field directly from magnetic resonance imaging (MRI) data using a tensor tomography data acquisition approach was developed. If tensor eigenvalues are assumed to be known, the reconstruction of principal directions requires fewer measurements than the reconstruction of the(More)
This paper investigates data compression methods for time-of-flight (TOF) positron emission tomography (PET), which rebin the 3-D TOF measurements into a set of 2-D TOF data for a stack of transaxial slices. The goal of this work is to develop rebinning algorithms that are more accurate than the TOF single-slice-rebinning (TOF-SSRB) method proposed by(More)