Vladimir Vukicevic

Learn More
Chromaffin cells probably are the most intensively studied of the neural crest derivates. They are closely related to the nervous system, share with neurons some fundamental mechanisms and thus were the ideal model to study the basic mechanisms of neurobiology for many years. The lessons we have learned from chromaffin cell biology as a peripheral model for(More)
The antiepileptic drug valproic acid (VPA) has been shown to influence the neural differentiation and neurite outgrowth of neural stem cells. Sympathoadrenal progenitor cells share properties with neural stem cells and are considered a potential cell source in the treatment of neurodegenerative diseases. The present study therefore aims at modulating the(More)
Chromaffin cells of the adrenal medulla are neural crest-derived cells of the sympathoadrenal lineage. Unlike the closely-related sympathetic neurons, a subpopulation of proliferation-competent cells exists even in the adult. Here, we describe the isolation, expansion, and in vitro characterization of proliferation-competent progenitor cells from the bovine(More)
Chromaffin cells of the adrenal medulla are neural crest-derived cells of the sympathoadrenal lineage. Different lines of evidence suggest the existence of a subpopulation of proliferation-competent progenitor cells even in the adult state. The identification of sympathoadrenal progenitors in the adrenal would greatly enhance the understanding of adrenal(More)
The potential use of neural stem cells in basic research, drug testing and for development of therapeutic strategies requires large scale in vitro amplification, increasing the probability of genetic instability and transformation. Little is known, however, about potential correlations between long-term culture of neural stem and progenitor cells (NSPCs),(More)
The differentiation of dopamine-producing neurons from chromaffin progenitors might represent a new valuable source for replacement therapies in Parkinson's disease. However, characterization of their differentiation potential is an important prerequisite for efficient engraftment. Based on our previous studies on isolation and characterization of(More)
The adrenal is a highly plastic organ with the ability to adjust to physiological needs by adapting hormone production but also by generating and regenerating both adrenocortical and adrenomedullary tissue. It is now apparent that many adult tissues maintain stem and progenitor cells that contribute to their maintenance and adaptation. Research from the(More)
The capacity of sympathoadrenal progenitors from adrenal medulla to generate dopaminergic neurons in vitro makes them an attractive source for replacement therapies of neurodegenerative diseases such as Parkinson's disease. Dopaminergic cells constitute one percent of the adult adrenal medulla only. Thus, isolation of sympathoadrenal progenitors and(More)
  • 1