Learn More
The three-dimensional crystal structure of catalase from Micrococcus lysodeikticus has been solved by multiple isomorphous replacement and refined at 1.5 A resolution. The subunit of the tetrameric molecule of 222 symmetry consists of a single polypeptide chain of about 500 amino acid residues and one haem group. The crystals belong to space group(More)
FtsZ is an essential bacterial guanosine triphosphatase and homolog of mammalian beta-tubulin that polymerizes and assembles into a ring to initiate cell division. We have created a class of small synthetic antibacterials, exemplified by PC190723, which inhibits FtsZ and prevents cell division. PC190723 has potent and selective in vitro bactericidal(More)
Peptide deformylase (PDF) is an essential bacterial metalloenzyme which deformylates the N-formylmethionine of newly synthesized polypeptides and as such represents a novel target for antibacterial chemotherapy. To identify novel PDF inhibitors, we screened a metalloenzyme inhibitor library and identified an N-formyl-hydroxylamine derivative, BB-3497, and a(More)
The major bifunctional aconitase of Escherichia coli (AcnB) serves as either an enzymic catalyst or a mRNA-binding post-transcriptional regulator, depending on the status of its iron sulfur cluster. AcnB represents a large, distinct group of Gram-negative bacterial aconitases that have an altered domain organization relative to mitochondrial aconitase and(More)
The three-dimensional structure analysis of crystalline fungal catalase from Penicillium vitale has been extended to 2.0 A resolution. The crystals belong to space group P3(1)21, with the unit cell parameters of a = b = 144.4 A and c = 133.8 A. The asymmetric unit contains half a tetrameric molecule of 222 symmetry. Each subunit is a single polypeptide(More)
X-ray crystallography of the nonheme manganese catalase from Lactobacillus plantarum (LPC) [Barynin, V.V., Whittaker, M.M., Antonyuk, S.V., Lamzin, V.S., Harrison, P.M., Artymiuk, P.J. & Whittaker, J.W. (2001) Structure9, 725-738] has revealed the structure of the dimanganese redox cluster together with its protein environment. The oxidized [Mn(III)Mn(III)](More)
BACKGROUND Catalases are important antioxidant metalloenzymes that catalyze disproportionation of hydrogen peroxide, forming dioxygen and water. Two families of catalases are known, one having a heme cofactor, and the other, a structurally distinct family containing nonheme manganese. We have solved the structure of the mesophilic manganese catalase from(More)
Enzymes of the glyoxylate-bypass pathway are potential targets for the control of many human diseases caused by such pathogens as Mycobacteria and Leishmania. Isocitrate lyase catalyses the first committed step in this pathway and the structure of this tetrameric enzyme from Escherichia coli has been determined at 2.1 A resolution. E. coli isocitrate lyase,(More)
The crystal structure of the bacterial catalase from Micrococcus lysodeikticus has been refined using the gene-derived sequence both at 0.88 A resolution using data recorded at 110 K and at 1.5 A resolution with room-temperature data. The atomic resolution structure has been refined with individual anisotropic atomic thermal parameters. This has revealed(More)
BACKGROUND The biosynthesis of key metabolic components is of major interest to biologists. Studies of de novo purine synthesis are aimed at obtaining a deeper understanding of this central pathway and the development of effective chemotherapeutic agents. Phosphoribosylaminoimidazolesuccinocarboxamide (SAICAR) synthase catalyses the seventh step out of ten(More)