Vladimir Stankovic

Learn More
Compressive sampling is a novel framework that exploits sparsity of a signal in a transform domain to perform sampling below the Nyquist rate. In this paper, we apply compressive sampling to significantly reduce the sampling rate of video. A practical system is developed that first splits each video frame into non-overlapping blocks of equal size.(More)
Unequal loss protection with systematic Reed-Solomon codes allows reliable transmission of embedded multimedia over packet erasure channels. The design of a fast algorithm with low memory requirements for the computation of an unequal loss protection solution is essential in real-time systems. Because the determination of an optimal solution is(More)
We consider a joint source-channel coding system that protects an embedded wavelet bitstream against noise using a finite family of channel codes with error detection and error correction capability. The performance of this system may be measured by the expected distortion or by the expected number of correctly received source bits subject to a target total(More)
Fountain codes were introduced as an efficient and universal forward error correction (FEC) solution for data multicast over lossy packet networks. They have recently been proposed for large scale multimedia content delivery in practical multimedia distribution systems. However, standard fountain codes, such as LT or Raptor codes, are not designed to meet(More)
A Slepian-Wolf coding scheme for compressing two uniform memoryless binary sources using a single channel code that can achieve arbitrary rate allocation among encoders was outlined in the work of Pradhan and Ramchandran. Inspired by this work, we address the problem of practical code design for general multiterminal lossless networks where multiple(More)
Reliable real-time transmission of packetized embedded multimedia data over noisy channels requires the design of fast error control algorithms. For packet erasure channels, efficient forward error correction is obtained by using systematic Reed-Solomon (RS) codes across packets. For fading channels, state-of-the-art performance is given by a product(More)
Embedded image codes are very sensitive to channel noise because a single bit error can lead to an irreversible loss of synchronization between the encoder and the decoder. Sherwood and Zeger introduced a powerful system that protects an embedded wavelet image code with a concatenation of a cyclic redundancy check coder for error detection and a(More)
We consider a joint source-channel coding system that protects an embedded bitstream using a finite family of channel codes with error detection and error correction capability. The performance of this system may be measured by the expected distortion or by the expected number of correctly decoded source bits. Whereas a rate-based optimal solution can be(More)
A Slepian-Wolf coding scheme that can achieve arbitrary rate allocation among two encoders was outlined in the work of Pradhan and Ramchandran. Inspired by this work, we start with a detailed solution for general (asymmetric or symmetric) Slepian-Wolf coding based on partitioning a single systematic channel code, and continue with practical code designs(More)
This paper considers the problem of communicating correlated information from multiple source nodes over a network of noiseless channels to multiple destination nodes, where each destination node wants to recover all sources. The problem involves a joint consideration of distributed compression and network information relaying. Although the optimal rate(More)