Vladimir Pekar

Learn More
This paper presents a comprehensive extension of the Scale Invariant Feature Transform (SIFT), originally introduced in 2D, to volumetric images. While tackling the significant computational efforts required by such multiscale processing of large data volumes, our implementation addresses two important mathematical issues related to the 2D-to-3D extension.(More)
We present a fully automated deformable model technique for myocardium segmentation in 3D MRI. Loss of signal due to blood flow, partial volume effects and significant variation of surface grey value appearance make this a difficult problem. We integrate various sources of prior knowledge learned from annotated image data into a deformable model.(More)
The detection and extraction of complex anatomical structures usually involves a trade-off between the complexity of local feature extraction and classification, and the complexity and performance of the subsequent structural inference from the viewpoint of combinatorial optimization. Concerning the latter, computationally efficient methods are of(More)
In recent years, several methods have been proposed for constructing statistical shape models to aid image analysis tasks by providing a priori knowledge. Examples include principal component analysis of manually or semiautomatically placed corresponding landmarks on the learning shapes [point distribution models (PDMs)], which is time consuming and(More)
Automatic detection of meaningful isosurfaces is important for producing informative visualizations of volume data, especially when no information about the data origin and imaging protocol is available. We propose a computationally efficient method for the automated detection of intensity transitions in volume data. In this approach, the dominant(More)
PURPOSE The aim of this study is to develop a surface-based deformable image registration strategy and to assess the accuracy of the system for the integration of multimodality imaging, image-guided radiation therapy, and assessment of geometrical change during and after therapy. METHODS AND MATERIALS A surface-model-based deformable image registration(More)
Deformable registration is an important application in medical image analysis and processing. We propose a physics-based parametric approach for deformable image registration, where non-rigid transformations are computed using an irregular grid of control points distributed within the image domain. The image is modelled as a three-dimensional (3D)(More)