Learn More
The capacity to associate neutral stimuli with affective value is an important survival strategy that can be accomplished by cell assemblies obeying Hebbian learning principles. In the neuroscience laboratory, classical fear conditioning has been extensively used as a model to study learning-related changes in neural structure and function. Here, we review(More)
Many behavioral and cognitive processes are grounded in widespread and dynamic communication between brain regions. Thus, the quantification of functional connectivity with high temporal resolution is highly desirable for capturing in vivo brain function. However, many of the commonly used measures of functional connectivity capture only linear signal(More)
Social organisms fundamentally rely on experience to successfully navigate in a social world by associating social stimuli with aversive versus safe qualities. Cognitive neuroscience research has shown that visual cues reliably paired with danger are processed more efficiently than neutral cues, and that such facilitated sensory processing extends to low(More)
We investigated the development of spontaneous (resting state) cerebral electric fields and their network organization from early to late childhood in a large community sample of children. Critically, we examined electrocortical maturation across one-year windows rather than creating aggregate averages that can miss subtle maturational trends. We(More)
Mental imagery is a fundamental cognitive process of interest to basic scientists and clinical researchers. This study examined large-scale oscillatory brain activity in the alpha band (8-12 Hz) during language-driven mental imagery using dense-array EEG. Three experiments demonstrated relative increases in alpha amplitude: (1) during imagery prompted by(More)
The visual system is biased toward sensory cues that have been associated with danger or harm through temporal co-occurrence. An outstanding question about conditioning-induced changes in visuocortical processing is the extent to which they are driven primarily by top-down factors such as expectancy or by low-level factors such as the temporal proximity(More)
Complex organisms rely on experience to optimize the function of perceptual and motor systems in situations relevant to survival. It is well established that visual cues reliably paired with danger are processed more efficiently than neutral cues, and that such facilitated sensory processing extends to low levels of the visual system. The neurophysiological(More)
Emotionally arousing scenes readily capture visual attention, prompting amplified neural activity in sensory regions of the brain. The physical stimulus features and related information channels in the human visual system that contribute to this modulation, however, are not known. Here, we manipulated low-level physical parameters of complex scenes varying(More)
Independent component analysis (ICA) offers a powerful approach for the isolation and removal of eyeblink artifacts from EEG signals. Manual identification of the eyeblink ICA component by inspection of scalp map projections, however, is prone to error, particularly when nonartifactual components exhibit topographic distributions similar to the blink. The(More)
Like many other primates, humans place a high premium on social information transmission and processing. One important aspect of this information concerns the emotional state of other individuals, conveyed by distinct visual cues such as facial expressions, overt actions, or by cues extracted from the situational context. A rich body of theoretical and(More)