Vladimir Matchkov

Learn More
This minireview discusses vasomotion, which is the oscillation in tone of blood vessels leading to flowmotion. We will briefly discuss the prevalence of vasomotion and its potential physiological and pathophysiological relevance. We will also discuss the models that have been suggested to explain how a coordinated oscillatory activity of the smooth muscle(More)
BACKGROUND AND PURPOSE T16A(inh)-A01, CaCC(inh)-A01 and MONNA are identified as selective inhibitors of the TMEM16A calcium-activated chloride channel (CaCC). The aim of this study was to examine the chloride-specificity of these compounds on isolated resistance arteries in the presence and absence (±) of extracellular chloride. EXPERIMENTAL APPROACH(More)
The extracellular calcium-sensing receptor CaSR is expressed in blood vessels where its role is not completely understood. In this study, we tested the hypothesis that the CaSR expressed in vascular smooth muscle cells (VSMC) is directly involved in regulation of blood pressure and blood vessel tone. Mice with targeted CaSR gene ablation from vascular(More)
The cerebrospinal fluid (CSF) pH influences brain interstitial pH and, therefore, brain function. We hypothesized that the choroid plexus epithelium (CPE) expresses the vacuolar H+-ATPase (V-ATPase) as an acid extrusion mechanism in the luminal membrane to counteract detrimental elevations in CSF pH. The expression of mRNA corresponding to several V-ATPase(More)
BACKGROUND AND PURPOSE Vasodilatation may contribute to the neuroprotective and vascular anti-remodelling effect of the tissue transglutaminase 2 (TG2) inhibitor cystamine. Here, we hypothesized that inhibition of TG2 followed by blockade of smooth muscle calcium entry and/or inhibition of Rho kinase underlies cystamine vasodilatation. EXPERIMENTAL(More)
  • 1