Learn More
A double-periodic array of pairs of parallel gold nanorods is shown to have a negative refractive index in the optical range. Such behavior results from the plasmon resonance in the pairs of nanorods for both the electric and the magnetic components of light. The refractive index is retrieved from direct phase and amplitude measurements for transmission and(More)
Plasmonics is a research area merging the fields of optics and nanoelectronics by confining light with relatively large free-space wavelength to the nanometer scale-thereby enabling a family of novel devices. Current plasmonic devices at telecommunication and optical frequencies face significant challenges due to losses encountered in the constituent(More)
One of the most rapidly growing areas of physics and nanotechnology focuses on plasmonic effects on the nanometre scale, with possible applications ranging from sensing and biomedicine to imaging and information technology. However, the full development of nanoplasmonics is hindered by the lack of devices that can generate coherent plasmonic fields. It has(More)
Metamaterials, or engineered materials with rationally designed, subwavelength-scale building blocks, allow us to control the behavior of physical fields in optical, microwave, radio, acoustic, heat transfer, and other applications with flexibility and performance that are unattainable with naturally available materials. In turn, metasurfaces-planar,(More)
Ag permittivity (dielectric function) in coupled strips is different from bulk and has been studied for strips of various dimensions and surface roughness. Arrays of such paired strips exhibit the properties of metamagnetics. The surface roughness does not affect the Ag dielectric function, although it does increase the loss at the plasmon resonances of the(More)
A negative permeability in a periodic array of pairs of thin silver strips is demonstrated experimentally for two distinct samples. The effect of the strip surface roughness on negative permeability is evaluated. The first sample, Sample A, is fabricated of thinner strips with a root mean square roughness of 7 nm, while Sample B is made of thicker strips(More)
This work is concerned with the experimental demonstration of a dual-band negative index metamaterial. The sample is double negative (showing both a negative effective permeability and a negative effective permittivity) for linearly polarized light with a wavelength between 799 and 818 nm, and the real part of its refractive index is approximately -1.0 at(More)
Near-infrared metamaterials that possess a reconfigurable index of refraction from negative through zero to positive values are presented. Reconfigurability is achieved by cladding thin layers of liquid crystal both as a superstrate and a substrate on an established negative-index metamaterial, and adjusting the permittivity of the liquid crystal. Numerical(More)
The broadband enhancement of single–photon emission from nitrogen-vacancy centers in nanodiamonds coupled to a planar multilayer metamaterial with hyperbolic dispersion is studied experimentally. The metamaterial is fabricated as an epitaxial metal/dielectric superlattice consisting of CMOS-compatible ceramics: titanium nitride (TiN) and aluminum scandium(More)