Learn More
The tumor suppressor p53 inhibits tumor growth primarily through its ability to induce apoptosis. Mutations in p53 occur in at least 50% of human tumors. We hypothesized that reactivation of mutant p53 in such tumors should trigger massive apoptosis and eliminate the tumor cells. To test this, we screened a library of low-molecular-weight compounds in order(More)
Norbinaltorphimine (nor-BNI) is a bifunctional reagent developed as a selective antagonist of the kappa opioid receptor. In this paper we examined the in vitro selectivity of nor-BNI, 6-desoxy-6 beta-fluoronaltrexone (cycloFOXY), and the enantiomer of cycloFOXY, among opioid receptor subtypes. Nor BNI exhibited the highest affinity for kappa binding sites(More)
OBJECTIVES The aims of the study were to compare the prevalence of selected maternal and lifestyle factors as well as the reproductive outcome of working women in two cities in Northwestern Russia (Moncegorsk and Apatity), and to assess the quality of pregnancy-outcome data obtained in an interview with registered information. STUDY DESIGN A retrospective(More)
The tumor suppressor p53 has been implicated in a growing number of biological processes, including cell cycle arrest, senescence, apoptosis, autophagy, metabolism, and aging. Activation of p53 in response to oncogenic stress eliminates nascent tumor cells by apoptosis or senescence. p53 is regulated at the protein level by posttranslational modifications(More)
PURPOSE APR-246 (PRIMA-1MET) is a novel drug that restores transcriptional activity of unfolded wild-type or mutant p53. The main aims of this first-in-human trial were to determine maximum-tolerated dose (MTD), safety, dose-limiting toxicities (DLTs), and pharmacokinetics (PK) of APR-246. PATIENTS AND METHODS APR-246 was administered as a 2-hour(More)
Reactivation of mutant p53 is likely to provide important benefits for treatment of chemotherapy- and radiotherapy-resistant tumors. We demonstrate here that the maleimide-derived molecule MIRA-1 can reactivate DNA binding and preserve the active conformation of mutant p53 protein in vitro and restore transcriptional transactivation to mutant p53 in living(More)
We recently identified PRIMA-1 as a low molecular weight compound that restores tumor suppressor function to mutant p53 proteins and has anti-tumor activity in vivo (1). Here we report the statistical analysis of the effect of PRIMA-1 on a panel of human tumor cell lines using information available in a database at the Developmental Therapeutics Program of(More)
The Pfizer compound CP-31398 has been reported to stabilize the core domain of the tumour suppressor p53 in vitro and be an effective anti-cancer drug by virtue of rescuing destabilized mutants of p53. We did not detect any interaction between the p53 core domain and CP-31398 in vitro by a wide range of quantitative biophysical techniques over a wide range(More)
The Russian nickel refineries located in the cities of Nikel and Zapolyarny close to the Norwegian border are responsible for extensive sulfur dioxide and nickel pollution, as well as severe ecological damage in both countries. The aim of our study was to investigate human nickel exposure in the populations living on both sides of the Norwegian-Russian(More)
Restoration of wild-type p53 expression triggers cell death and eliminates tumors in vivo. The identification of mutant p53-reactivating small molecules such as PRIMA-1 opens possibilities for the development of more efficient anticancer drugs. Although the biological effects of PRIMA-1 are well demonstrated, little is known about its molecular mechanism of(More)